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VOLUME |: BIOVENTING PRINCIPLES

This document is a product of the bioventing research and development efforts sponsored by the
U.S. Air Force Armstrong Laboratory, the Bioventing Initiative sponsored by the U.S. Air Force Center
for Environmental Excellence (AFCEE) Technology Transfer Division, and the Bioremediation Field
Initiative sponsored by the U.S. Environmental Protection Agency (U.S. EPA).

The Armstrong Laboratory Environics Directorate (AL/EQ), an dement of the Air Force Human
Systems Center, began its research and devel opment program in bioventing in 1988 with a study at Hill
Air Force Base (AFB), Utah. Follow-on effortsincluded field research studies at Tyndall AFB, Florida,
Eielson AFB, Alaska, and F.E. Warren AFB, Wyoming, to monitor and optimize process variables.
Results from these research efforts led to the Bioventing Initiative and are discussed in this document.

The AFCEE's Bioventing Initiative has involved conducting field treatability studiesto evaluate
bioventing feasibility at more than 125 sites throughout the United States. At those sites where feasibility
studies produced positive results, pilot-scale bioventing systems were installed and operated for 1 year.
Results from these pilot-scal e studies have culminated in production of this document.

The U.S. EPA’s Bioremediation Field Initiative was established to provide the U.S. EPA and state
project managers, consulting engineers, and industry with timely information regarding new
developments in the application of bioremediation at hazardous waste sites. This program has sponsored
field research to enable the U.S. EPA laboratories to more fully document newly developing
bioremediation technologies. As part of the U.S. EPA Bioremediation Field Initiative, the U.S. EPA has
contributed to the Air Force Bioventing Initiative in the development of the test plan for conducting the
pilot-scal e bioventing studies and assisted in the development of this manual.

Theresults from bioventing research and devel opment efforts and from the pilot-scal e bioventing
systems have been used to produce this -volume manual. Although this design manual has been written
based on extensive experience with petroleum hydrocarbons (and thus, many examples use this
contaminant), the concepts here should be applicable to any aerobically biodegradable compound. The
manual provides details on bioventing principles; site characterization; field treatability studies; system
design, installation, and operation; process monitoring; site closure; and optional technologies to combine
with bioventing if warranted. Thisfirst volume describes the basic principles of bioventing. The second

volume focuses on bioventing design and process monitoring.



1.0INTRODUCTION

Bioventing is the process of aerating soils to stimulate in situ biological activity and promote
bioremediation. Bioventing typically is applied in situ to the vadose zone and is applicable to any
chemical that can be aerobically biodegraded, but to date has been implemented primarily at petroleum-
contaminated sites. Through the efforts of the U.S. Air Force Bioventing Initiative and the U.S. EPA
Bioremediation Field Initiative, bioventing has been implemented at more than 150 sites and has emerged
as one of the most cost-effective and efficient technologies currently available for vadose zone
remediation of petroleum-contaminated sites. This document is a culmination of the experience gained
from these sites and provides specific guidelines on the principles and practices of bioventing.

Much of the hydrocarbon residue at a fud-contaminated site is found in the vadose zone sails, in
the capillary fringe, and immediately below the water table (Figure 1-1). Seasonal water table
fluctuations typically spread residues in the area immediately above and below the water table.
Conventional physical treatment in the past involved pump-and-treat systems where groundwater was
pumped out of the ground, treated, and either discharged or reinjected. Although useful for preventing
continued migration of contaminants, these systems rardy achieved typical cleanup goals. Bioventing
systems are designed to remove the contaminant source from the vadose zone, thereby preventing future
and/or continued contamination of the groundwater.

A typical bioventing system isillustrated in Figure 1-2. Although bioventing is related to the
process of soil vacuum extraction (SVE), the primary objectives of these two bioremediation technologies
aredifferent. Soil vacuum extraction is designed and operated to maximize the volatilization of low-
mol ecular-weight compounds, with some biodegradation occurring. In contrast, bioventing is designed to
maximize biodegradation of aerobically biodegradable compounds, regardless of their molecular weight,
with some volatilization occurring. The major distinction between these technologies is that the objective
of soil venting is to optimize removal by volatilization, while the objective of bioventing is to optimize
bi odegradation while minimizing volatilization and capital and utility costs. Although both technologies
involve venting of air though the subsurface, the differences in objectives result in different design and
operation of the remedial systems.

Thefollowing chapters provide an overview of the principles of bioventing in relation to
physical, chemical, and microbial processes occurring in thefield. An overview of the development of
bioventing, including development of the Bioventing Initiativeis provided as a basis for the data
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Figure 1-1. Hydrocarbon Distribution at a Typical Contaminated Site



Volume I: Bioventing Principles 4 September 29, 1995

—{H—

Biodegradation
E of Vapors

T Ll
L

0

7 g ///
Y=
Soll Gas —T

Figure 1-2. Schematic Diagram of a Typical Bioventing System
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presented in this document. Data from Bioventing Initiative sites are used throughout this document to
illustrate principles of bioventing as determined from field testing.



2.0 DEVELOPMENT OF BIOVENTING

This chapter isintended to provide a framework for this document, describing the devel opment and
structure of the Bioventing Initiative and, ultimately, this document. This chapter provides an overview
of bioventing, covering oxygen supply in situ - the dominant issue in the evolution of bioventing, early
bioventing studies which led to development of the Bioventing Initiative, the final structure of treatability
studies and bioventing system design used for the Bioventing Initiative and, finally, emerging techniques
that are being investigated as modifications to the conventional bioventing design described in this
document.

2.1 Oxygen Supply to Contaminated Areas

One of the main driving forces behind the devel opment of bioventing was the difficulty in
delivering oxygen in situ. Many contaminants, especially the petroleum hydrocarbons found in fuels, are
biodegradable if oxygen is available. Traditionally, enhanced bioreclamation processes used water to
carry oxygen or an alternative electron acceptor to the contaminated zone. This was common whether the
contamination was present in the groundwater or in the unsaturated zone. Media for adding oxygen to
contaminated areas have included pure oxygen-sparged water, air-sparged water, hydrogen peroxide, and
ar.

In all cases where water is used, the solubility of oxygen isthe limiting factor. At standard
conditions, a maximum of 8 to 10 mg/L of oxygen can be obtained in water when aerated, while 40 to 50
mg/L can be obtained if sparged with pure oxygen, and up to 500 mg/L of oxygen theoretically can be
supplied utilizing 1,000 mg/L of hydrogen peroxide. Using the stoichiometric equation shown as
Equation (2-1)", the quantity of water which must be delivered to provide sufficient oxygen for
bi odegradation can be calculated.

CeHis+9.50, - 6CO, + 7TH,0 (2-1)

An example of calculating the mass of water that must be delivered for hydrocarbon degradation
is shown in Example 2-1. Table 2-1 summarizes oxygen requirements based on the supplied form of

oxygen.

! Refer to Section 3.2 for devel opment of this equation.
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Example 2-1. Calculation of Air-Saturated Water Mass That Must Be Delivered to
Degrade Hydrocarbons: Based on Equation (2-1), the stoichiometric molar ratio of
hydrocarbon to oxygen is 1:9.5. Or, to degrade one mole of hydrocarbons, 9.5 moles
of oxygen must be consumed. On a mass basis:

1 mole CH,, 1 mole O, 86 g CH,, 86gCH, 1gCH,
X X = =
9.5 moles O, 32g0, 1 mole CH,, 304 g O, 35g0,

Given an average concentration of 9 mg/L oxygen dissolved in Water, the amount of
air-saturated water that must be delivered to degrade 1 g hydrocarbon is calculated as
follows:

35 g O, required 390 L H,0

9mg0,x 1g  lgCH,
1LHO - 1,000 mg

or, to degrade 1 Ib:

390 L HO y 1 gallon y 1,000 g _ 47,000 gallons H,0
1gCH,, 38L 221 11b CH,

Dueto the low aqueous solubility of oxygen, hydrogen peroxide has been tested as an oxygen
sourcein laboratory studies and at several field sites (Hinchee et al., 1991a; Aggarwal et al., 1991;
Morgan and Watkinson, 1992). Asshownin Table 2-1, if 500 mg/L of dissolved oxygen can be supplied
via hydrogen peroxide, the mass of water that must be delivered is reduced by more than an order of
magnitude. Initially, these calculations made the use of hydrogen peroxide appear to be an attractive
aternative to injecting air-saturated water.

Hydrogen peroxide is miscible in water and decomposes to rel ease water and oxygen as shown in
Equation (2-2):

H,0, > H,0 + %Q (2-2)

Many substances commonly present in groundwater and soils act as catalysts for the
decomposition of peroxide. Important among these are aqueous species of iron and copper, and the
enzyme catalase (Schumb et al., 1955), which has significant activity in situ (Spain et al., 1989). If
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Table 2-1. Oxygen Requirements Based on Supplied Form of Oxygen

Volumeto Degrade 1 1b

Oxygen Form Oxygen Concentration in H,O Hydrocarbon
Air-saturated H,O 8to 10 mg/L 47,000 gallons (180,000 L)
Oxygen-saturated H,O 40 to 50 mg/L 11,000 gallons (42,000 L)
Hydrogen peroxide Up to 500 mg/L 1,600 gallons (6,100 L)
Air NA (21 % vol/vol in air) 170 ft* (4,800 L)

the rate of oxygen formation from hydrogen peroxide decomposition exceeds the rate of microbial oxygen
utilization, gaseous oxygen may form due to its limited aqueous solubility. Gaseous oxygen may form
bubbles that may not be transported efficiently in groundwater, resulting in ineffective oxygen delivery.

Phosphate is commonly used in nutrient formulations in an effort to decrease the rate of peroxide
decomposition in groundwater applications (Britton, 1985). However, the effectiveness of phosphate
addition in stabilizing peroxide injected into an aquifer has not been well established and conflicting
results have been reported by different researchers (American Petroleum Institute, 1987; Brown et al.,
1984; Downey et al., 1988; Huling et al., 1990; Morgan and Watkinson, 1992).

A field experiment was conducted by Hinchee et a. (1991a) to examine the effectiveness of
hydrogen peroxide as an oxygen source for in situ biodegradation. The study was performed at a JP-4 jet
fuel-contaminated site at Eglin AFB, Florida. Site soils consisted of fine- to coarse-grained quartz sand
with groundwater at a depth of 2 to 6 ft (0.61 to 1.8 m). Previous studies by Downey et al. (1988) and
Hinchee et al. (1989) at the same site had shown that rapid decomposition of hydrogen peroxide occurred,
even with the addition of phosphate as a peroxide stabilizer. In subsequent studies, hydrogen peroxide
was injected at a concentration of 300 mg/L both with and without the addition of a phosphate-containing
nutrient solution. Asin previous studies, hydrogen peroxide decompasition was rapid, resulting in poor
distribution of oxygen in groundwater. Addition of the phosphate-containing nutrient solution did not
appear to improve hydrogen peroxide stability.

Other attempts have been made using hydrogen peroxide as an oxygen source. Although results
indicate better hydrogen peroxide stability than achieved by Hinchee et al. (1989), it was
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concluded that most of the hydrogen peroxide decomposed rapidly (Huling et al., 1990). Some degradation of
aromatic hydrocarbons appears to have occurred; however, no change in total hydrocarbon contamination levels was
detected in the soils (Ward, 1988).

In contrast to hydrogen peroxide use, when air is used as an oxygen source in unsaturated soil,
170 t* (4,800 L) of air must be delivered to provide the minimum oxygen required to degrade 1 Ib (0.45
kg) of hydrocarbon (Table 2-1). Since costs associated with water-based delivery of oxygen can be
relatively high, the use of gas-phase delivery results in a significant reduction in the cost associated with
supplying oxygen'.

An additional advantage of using a gas-phase process is that gases have greater diffusivity than
liquids. At many sites, geologic heterogeneities cause fluid that is pumped through the formation to be
channeled into the more-permeable pathways (e.g., in an alluvial soil with interbedded sand and clay, all
of thefluid flow initially takes placein the sand). Asaresult, oxygen must be delivered to the less-
permeable clay lenses through diffusion. In a gaseous system (as found in unsaturated soils), this
diffusion can be expected to take place at rates at least three orders of magnitude greater than ratesin a
liquid system (as is found in saturated soils). Although it is not realistic to expect diffusion to aid
significantly in water-based bioreclamation, diffusion of oxygen in a gas-phase system is a significant
mechanism for oxygen delivery to less-permeable zones.

Given the advantages of using air rather than water as the oxygen source, several investigators
began exploring the feasibility of an air-based oxygen supply system as aremedial option. A summary of
theresults of these investigations is presented in Section 2.2.

2.2 Bioventing Research and Development

Figure 2-1 provides a historical perspective of bioventing research and development. To the
authors knowledge, the first documented evidence of unsaturated zone biodegradation resulting from
forced aeration was reported by the Texas Research Institute, Inc., in a 1980 study for the American
Petroleum Ingtitute. A large-scale model experiment was conducted to test the effectiveness of a
surfactant treatment to enhance the recovery of spilled gasoline. The experiment accounted for only 8
gallons (30 L) of the 65 gallons (250 L) originally spilled and raised questions about the fate of the

! Refer to Section 5.0, Volume |1 for a comparison of costs associated with hydrogen peroxide use versus air
(bioventing).
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Figure 2-1. Historical Perspective of the Development of Bioventing
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gasoline. Subsequently, a column study was conducted to determine a diffusion coefficient for soil
venting. This column study evolved into a biodegradation study in which it was concluded that as much
as 38% of the fuel hydrocarbons were biologically mineralized. Researchers concluded that venting not
only would remove gasoline by physical means, but also would enhance microbial activity and promote
bi odegradation of the gasoline (Texas Research Institute, 1980; 1984).

To theauthors' knowledge, thefirst actual field-scale bioventing experiments were conducted by
Jack van Eyk for Shell Research. In 1982, at van Eyk’s direction, the Shell Laboratory in Amsterdam,
The Netherlands initiated a series of experiments to investigate the effectiveness of bioventing for treating
hydrocarbon-contaminated soils. These studies were reported in a series of papers (Anonymous, 1986;
Staatsuitgeverij, 1986; van Eyk and Vreeken, 1988; 1989; and 1989b).

Wilson and Ward (1986) suggested that using air as a carrier for oxygen could be 1,000 times
more efficient than using water, especially in deep, hard-to-flood unsaturated zones. They made the
connection between oxygen supply via soil venting and biodegradation by observing that "soil venting
uses the same principle to remove volatile components of the hydrocarbon.” In ageneral overview of the
soil venting process, Bennedsen et al. (1987) concluded that soil venting provides large quantities of
oxygen to the unsaturated zone, possible stimulating aerobic degradation. They suggested that water and
nutrients also would be required for significant degradation and encouraged additional investigation into
this area.

Biodegradation enhanced by soil venting has been observed at severa field sites. Investigators
claimthat at a soil venting site for remediation of gasoline-contaminated soil, significant biodegradation
occurred (measured by atemperature rise) when air was supplied. Investigators pumped pulses of air
through a pile of excavated soil and observed a consistent rise in temperature, which they attributed to
biodegradation. They claimed that the pile was cleaned up during the summer primarily by
bi odegradation (Conner, 1989). However, they did not control for natural volatilization from the
aboveground pile, and not enough data were published to critically review their biodegradation claim.

Researchers at Traverse City, Michigan, observed a decrease in the toluene concentrationin
unsaturated zone soil gas, which they measured as an indicator of fuel contamination in the unsaturated
zone. They assumed that advection had not occurred and attributed the toluene | oss to biodegradation.
Theinvestigators concluded that because toluene concentrations decayed near the
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oxygenated ground surface, soil venting is an attractive remediation alternative for biodegrading light
volatile hydrocarbon spills (Ostendorf and Kampbell, 1989).

The U.S. Air Forceinitiated its research and development program in bioventing in 1988 with a
study at Site 914", Hill AFB, Utah. Thissiteinitially was operated as a soil vapor extraction unit, but was
modified to a bioventing system after 9 months of operation because there was evidence of
biodegradation and in an effort to reduce costs by reducing off-gas. Moisture and nutrient addition were
studied at this site; however, while moisture addition appeared to improve biodegradation, nutrient
addition did not. Final soil sampling demonstrated that benzene, toluene, ethylbenzene, and xylenes
(BTEX) and total petroleum hydrocarbon (TPH) levels were reduced to below regulatory levels, and this
site became the first Air Force site that was closed through in situ bioremediation. During this study, it
became apparent that bioventing had great potential for remediating JP-4 jet fuel -contaminated soils. It
also was apparent that additional research would be needed before the technology could be applied
routinely in thefield.

Following the Site 914, Hill AFB study, a more controlled bioventing study was completed at
Tyndall AFB?, Florida. This study was designed to monitor specific process variables and the subsequent effect on
biodegradation of hydrocarbons. Several important findings resulted from thiswork, including the effect of air
flowrates on removal by biodegradation and volatilization, the effect of temperature on biodegradation rates, the
lack of micrabial stimulation from the addition of moisture and nutrients, and the importance of natural
nitrogen supply through nitrogen fixation. In addition, initial and final contaminant measurements
showed over 90% removal of BTEX. Although this study was short-term, it illustrated the effectiveness
of bioventing.

The studies conducted at Hill and Tyndall AFBs provided valuable information on bioventing.
However, it was apparent that long-term, controlled bioventing studies were necessary to fully evaluate
and optimize the technology. In 1991, long-term bioventing studies were initiated at Site 280, Hill AFB,
Utah and at Site 20, Eielson AFB, Alaska®. These studies were joint efforts between the U.S. EPA and
the U.S. Air Force Environics Directorate of the Armstrong Laboratory. These studies werejoint efforts
between the U.S. EPA and the U.S. Air Force Environics Directorate of the Armstrong Laboratory. These
studies have involved intensive monitoring of several process variables, including the effect of soil
temperature on biodegradation rates, surface emission analyses, and optimization of flowrate.

Based on the success of these previous studies, in 1992, AFCEE initiated the Bioventing
Initiative where pilot-scale bioventing systems were installed at 125 contaminated sites located
throughout the continental United States and in Hawaii, Alaska, and Johnston Atoll (Figure 2-2). The

! Refer to Section 4.1 for a detailed discussion of this study.
2 Refer to Section 4.2 for a detailed discussion of this study.
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sites varied dramatically in climatic and geologic conditions. Contaminants typically were petroleum
hydrocarbons from JP-4 jet fuel, heating oils, waste oils, gasoline, and/or diesel; however, somefire
training areas also were studied where significant concentrations of solvents were present. This manual is
aproduct of this study and represents the culmination of data collected from these sites and other projects.

In addition to these studies, other bioventing studies have been conducted by several researchers.
A summary of some sites where bioventing has been applied is shown in Table 2-2'. The scale of
application and contaminant type is given, as well as the biodegradation rate, if known. The studies listed
in Table 2-2 are limited to those where the study was conducted in situ, where no inoculum was added to
site soils, and flowrates were optimized for biodegradation, not volatilization. It isimportant to
distinguish between bioventing and SVE systems. Bioventing systems operate at flowrates optimized for
bi odegradation not volatilization, although some volatilization may occur. SVE systems operate at
flowrates optimized for volatilization, although some biodegradation may occur. Therefore, flowrates
and configuration of the two systems are significantly different.

The following section describes the basic structure for field studies conducted as part of the
Bioventing Initiative. Data from these studies were used to generate this two-volume document.

3 Refer to Sections 4.3 and 4.4, respectively, for detailed discussions of these studies.
! Only select Bioventing Initiative sitesareincluded in thistable. A presentation of data from all Bioventing
Initiative sitesisprovided in Section 4.1.
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2.3 Structure of Bioventing Initiative Field Treatability Studies and Bioventing System Design

The design of thefield treatability studies and final bioventing system was devel oped based on
experience at previous studies at Hill, Tyndall, and Eielson AFBs. The Test Plan and Technical Protocol
for a Treatability Test for Bioventing (Hinchee et al., 1992) was written to standardize all field methods
from treatability tests to well installations. The document allowed for collection of consistent data from
125 sites, which provided a strong database for evaluating bioventing potential. At all sites, the
following activities were conducted:

* ditecharacterization, including a small-scale soil gas survey and collection of initial soil and soil
gas samples for analysis of BTEX, TPH, and soil physicochemical characteristics;

¢ field treatability studies, including an in situ respiration test and a soil gas permeability test;

* identification of a background, uncontaminated area for comparison with the contaminated area

of background respiration rates and nutrient levels,

* installation of a blower for 1-year of operation (typically configured for air injection), if results of
field treatability studies were positive;

® conduct of 6-month and 1-year in situ respiration tests at sites where a blower had been installed;
and

* collection of final soil and soil gas samples for analyses of BTEX and TPH.

Of particular significance were the use of the in situ respiration test to measure microbial activity
and the use of air injection instead of extraction for air delivery.

Thein situ respiration test was devel oped to rapidly measure aerobic biodegradation ratesin situ
at discrete locations'. Biodegradation rates calculated from thein situ respiration test are useful (1) for
assessing the potential application of bioremediation at a given site, (2) for estimating the time required
for remediation at a given site, and (3) for providing a measurement tool for evaluating the effects of

! Refer to Section 1.4, Volume |1 for methods for conducting the in situ respiration test and analyses of
test data.



Volume I: Bioventing Principles 18 September 29, 1995

various environmental parameters on microbial activity and ultimately on bioventing performance. The
actual effect of individual parameters on microbial activity is difficult to assessin the field dueto
interference and interactions among these parameters. Thein situ respiration test integrates all factors to
simply assess whether the microorganisms are metabolizing the fuel. Data from the in situ respiration test
and site measurements were used to conduct a statistical analysis of the observed effects of the site
measurements on microbial activity in the field. The statistical analysis was constructed to account for
parameter interactions. These results are discussed in detail in Section 5.0.

Also of noteisthat 120 of the 125 bioventing systems installed were configured for air injection.
Prior to the bioventing studies conducted at Hill (Site 280) and Eielson AFBs, bioventing systems
typically were operated in the extraction configuration, similar to SVE systems. However, research at Hill
and Eielson AFBs demonstrated that air injection is a feasible and more efficient alternativeto air
extraction, resulting in a greater proportion of hydrocarbon biodegradation rather than volatilization and
reduced air emissions'. Therefore, the air injection configuration was sdlected for the basic bioventing
system at Bioventing Initiative sites.

The results generated from the Bioventing I nitiative are summarized in detail in Section 5.0 and
are used to illustrate the basic principles of bioventing and microbial processes discussed in Section 3.0.
The design guiddlines presented in this manual have culminated primarily from the experience of
installing and operating the 125 Bioventing Initiative sites. These design guidelines represent the basic
bioventing system, which is applicable to the majority of sites suitablefor bioventing. The following
section addresses emerging techniques for modifications to the basic bioventing system described in this
document for sites that are not amenable to standard bioventing methods.

2.3 Emerging Techniques for Modifications to Bioventing Systems

Several techniques are being investigated as a means of modifying the conventional bioventing
system described in this document. These techniques have not been tested extensively in thefield;
therefore, their potential feasibility is unknown. They are briefly presented in this section to illustrate their
potential application.

! Refer to Section 2.1, Volume 1 for adiscussion of air injection versus extraction.
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The bioventing modifications being investigated are designed to address specific challengesin

bioventing:

® |njection of pure oxygen instead of air for treatment of low-permeability soils. Because only
low flowrates are possible in low-permeability soils, injection of pure oxygen may be useful
for providing larger oxygen concentrations for a given volume than is possible with air

injection.

* Soil warming for bioventing in cold climates. Soil warming can be used to increase
biodegradation rates, thus decreasing remediation times. This technique has been
studied in detail at Site 20, Eielson AFB, Alaska', but would be an option only in extreme

environments.

* Remediation of recalcitrant compounds through ozonation. Ozonation may be used to partially
oxidize more recalcitrant contaminants, making them more susceptible to biodegradation. This
technique would not be necessary at petroleum-contaminated sites, but may be considered at
sites contaminated with compounds such as polycyclic aromatic hydrocarbons (PAHS) or

pesticides.

* Remediation of contaminated saturated soils through air sparging. Air sparging is being
investigated as a means of aerating saturated soil to enhance biodegradation, as well as
volatilization. However, studies to date have been inconclusive concerning its effectiveness due
to alack of adequate controls and measurement techniques.

The techniques described above represent potential future areas of investigation in the
bioremediation field. The following chapters describe the principles of bioventing, which also apply to the
techniques described in this section.

! Refer to Section 4.4 for adiscussion of this site and the cost benefits of soil warming.



3.0 PRINCIPLES OF BIOVENTING

In this chapter, basic principles fundamental to the bioventing process are discussed to provide a
clear understanding of the many physical, chemical, and biological processes that impact the ultimate
feasibility of bioventing. Recognizing the significance of these different processes will lead to more
efficient bioventing design and operation. Specific topics to be considered in this chapter include:

* soil gas permeability, contaminant diffusion and distribution, and zone of oxygen influence
(Section 3.1);

® subsurface distribution of animmiscibleliquid (Section 3.1);

* environmental factors which affect microbial processes, such as € ectron acceptor conditions,
moisture content, pH, temperature, nutrient supply, contaminant concentration, and
biocavailability (Section 3.2);

* compounds targeted for removal through bioventing (Section 3.3); and

* BTEX versus TPH removal during petroleum bioventing (Section 3.4).

3.1 Physical Processes Affecting Bioventing
Four primary physical characteristics affect bioventing. These include soil gas permeability,
contaminant diffusion in soil, contaminant distribution, and zone of oxygen influence. Each of these
parameters is discussed in the following sections

3.1.1 Soil Gas Per meability

Assuming contaminants are present that are amenable to bioventing, geology probably is the most
important site characteristic for a successful bioventing application. Soils must be sufficiently permeable
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to allow movement of enough soil gas to provide adequate oxygen for biodegradation, on the order of
0.251t0 0.5 pore volumes per day.

Soil gas permeability is a function of both soil structure and particle size, as well as of soil
moisture content. Typically, permeability in excess of 0.1 darcy is adequate for sufficient air exchange.
Below this level, bioventing certainly is possible, but field testing may be required to establish feasibility.

When the soil gas permeability falls below approximately 0.01 darcy, soil gas flow is primarily
through either secondary porosity (such as fractures) or through any more permeable strata that may be
present (such as thin sand lenses). Therefore, the feasibility of bioventing in low permeability soilsis a
function of the distribution of flow paths and diffusion of air to and from the flow paths within the
contaminated area.

Inasoil that is of areasonable permeability, a minimum separation of 2 to 4 ft (0.61 to 1.2m)
between vertical and horizontal flow paths and contaminant may still result in successful treatment due to
oxygen diffusion. However, the degree of treatment will be very site-specific.

Bioventing has been successful in some low-permeability soils, such asasilty clay site at Fallon
Naval Air Station (NAS), Nevada (Kittel et al., 1995), aclayey site at Beale AFB, California (Phelps et
a., 1995), asilty site at Eielson AFB, Alaska (Leeson et al., 1995), and a silty clay sitein Albemarle
County, Virginia (Leeson et a., 1994), and at many Bioventing Initiative sites. Grain size analysis was
conducted on several samples from each site in the Bioventing Initiative. The relative distribution of
fine-grained soilsisillustrated in Figure 3-1. Sufficient soil gas permeability has been demonstrated at
many sites with silt and clay contents exceeding 80% by weight. Approximately 50% of the sites tested
contained greater than 50% clay and silt fractions. Oxygen distribution has generally been adequate in
soils where permeability values exceeded 0.1 darcy, with oxygen detected at ambient levelsin all nine of
the monitoring points installed. Few sites had permeability less than 0.1 darcy; therefore, data for analysis
are limited. The greatest limitation to bioventing at Bioventing I nitiative sites has been excessive soil
moisture. A combination of high soil moisture content and fine-grained soils has made bioventing
impractical at only three of the 125 test Sites.

In general, our calculated soil gas permeability values have exceeded suggested literature values
reported in Johnson et al. (1990) for silt and clay soils. Thisis likely due to the heterogeneous nature of
most soils, which contain lenses of more permeable material or fractures which aid in air distribution.
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Figure 3-1. Distribution of Silt- and Clay-Sized Particles at Bioventing Initiative Sites



Volume I: Bioventing Principles 23 September 29, 1995

3.1.2 Contaminant Distribution

Another important factor affecting the feasibility of bioventing is the contaminant distribution
throughout the site. Because bioventing is in essence an air delivery system designed to efficiently
provide sufficient oxygen to contaminated soils, it is important to have a clear understanding of
subsurface contaminant distribution. Many of the sites at which bioventing can be applied are
contaminated with immiscible liquids, such as petroleum hydrocarbons. When a fuel release occurs, the
contaminants may be present in any or all of four phases in the geologic media:

* sorbed to the soils in the vadose zone,

® inthevapor phasein the vadose zone;

* infree-phaseform floating on the water table or asresidual saturation in the vadose zone;
and/or

® intheagueous phase dissolved in pore water in the vadose zone or dissolved in the
groundwater.

Of the four phases, dissolved petroleum contaminants in the groundwater frequently are
considered to be of greatest concern dueto the risk of humans being exposed to contaminants through
drinking water. However, the free-phase and sorbed-phase hydrocarbons act as feedstocks for
groundwater contamination, so any remedial technology aimed at reducing groundwater contamination
must address these sources of contamination. Also, hydrocarbons in the vadose zone can produce a
volatile organic carbon (VOC) threat in subsurface buildings or structures.

Immiscibleliquids are classified as less dense, nonaqueous-phase liquids (LNAPLS) if their
density is less than water or dense, nonagqueous-phase liquids (DNAPLS) if their density is greater than
water. In general, most petroleum hydrocarbons, such as gasoline, are LNAPLS, whereas most chlorinated
solvents, such as trichloroethylene (TCE), are DNAPLSs. Due to these differences in densities, subsurface
spills of LNAPLs and DNAPL s will behave differently at a given site, with LNAPLs distributed primarily
in the vadose zone and DNAPL s distributed in both the unsaturated and saturated zone. Given that
bioventing is primarily a vadose zone treatment process, this discussion will focus on the behavior of
LNAPLs.
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When a large enough fue spill occurs, the fud is retained within approximately 10 to 20% of the
pore volume of the pore volume of the soil and eventually may cometo rest on the water table.
Contaminants then partition among the various phases existing within the subsurface environment. Fluids
can move through the subsurface via various mechanisms, such as advection and diffusion. LNAPLs are
likely to migrate through the vadose zone relatively uniformly until the capillary fringe is reached. The
LNAPL will then spread laterally along the saturated zone. Water table fluctuation may result in LNAPL
below the water table; however, an LNAPL will not permeate the water-saturated zone unless a critical
capillary pressureis exceeded, which is a function of the porous medium pore sizes.

In the vadose zone, components of the LNAPL may partition into the vapor phase or the agueous
phase (pore water), sorb onto solids, or remain in the free product. Contaminants in free product may
partition into the vapor phase, depending in their vapor pressures at the temperature and pressure existing
in the vadose zone. Once in the vapor phase, these contaminants can migrate in response to advection and
diffusion. Raoult’s law is used to describe partitioning at equilibrium between an immiscible phase and

vapor phase.
Cv =X Ciaat (3-1)

Where: CV = volumetric concentration of the contaminant (X) in the vapor phase (x/Lvepor);
X =mole fraction of the contaminant (dimensionless); and
Cv%\t = saturated vapor concentration of the contaminant (gy/Lyapor)-

C\at is defined further as:

C = (L‘WI) PV

i RT,,
where: MW, = molecular weight of the contaminant (g,/mole,);
Py = vapor pressure of pure contaminant at temperature T (atm);

R = gas constant (L-atm/mole-°K); and
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Tabs = absolute temperature (°K).

Free product in contact with groundwater may leach contaminants into the groundwater or
contaminants may dissolve into pore water in the vadose zone, depending on the solubility of specific
components. Once in the groundwater, contaminants can migrate through the subsurface in responseto a
gradient in the aqueous-phase total potential (i.e., advection) or by a difference in the aqueous phase
chemical concentrations. The equilibrium relationship between the aqueous and the immiscible phasesis
described as:

Cw =X S« (3-3)

where: CW = volumetric concentration of contaminant X in the aqueous phase (gx/L aqueous);

Sx = solubility of pure contaminant X in water (gx/L waer)-

Sorption of contaminants is a complex process involving several different phenomena
including coulomb forces, London-van der Waals forces, hydrogen bonding, ligand exchange, dipole-
dipoleforces, dipole-induced dipole forces, and hydrophobic forces (Wiedemeier et al., 1995). In the case
of hydrocarbons, due to their nonpolar nature, sorption most often occurs through hydrophobic bonding to
organic matter. Hydrophobic bonding often is a dominant factor influencing the fate of organic chemicals
in the subsurface (DeVinny et al., 1990). The degree of sorption generally is empirically related by the
organic content of the soil and by the octanol-water partition coefficient of a particular compound.

Sorption isotherms generally follow one of three shapes: Langmuir, Freundlich, or
linear (Figure 3-2). The Langmuir isotherm describes the sorbed contaminant concentration as increasing
linearly with concentration then leveling off as the number of sites available for sorption arefilled. This
isotherm accurately describes the situation at or near the contaminant source where concentrations are
high. The Freundlich isotherm assumes an infinite number of sorption sites, which would accurately
describe an area some distance from the contaminant source where concentrations are dilute. The
mathematical expression contains a chemical-specific coefficient that may alter the linearity of the
isotherm. The linear isotherm isrelatively smpleand is valid for dissolved
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Figure 3-2. Sorption Isotherms
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compounds at less than one-half of their solubility (Lyman et al., 1992). Thisisothermistypically valid to
describe hydrocarbon sorption. The linear isotherm is expressed mathematically as:

Cs=KqCy (3-4)

where: CS = quantity of contaminant x sorbed to the solid matrix (Qx/Jsoil);

K g = sorption coefficient (L aueous/Gsoi)

The sorption coefficient may be determined experimentally, estimated based on values published
in theliterature, or estimated using the octanol/water partition coefficient (K ) and the organic carbon
fraction (foc) of the soil. The sorption coefficient can be estimated using the following mathematical
expression:

Ka= Kow foc (3-5)

Some values for K, are provided in Table 3-1.

In practice, at equilibrium, the concentration of most petroleum hydrocarbon compounds of
interest in the aqueous or vapor phases is driven by the immiscible phase, if present, and the sorbed phase,
if the immiscible phaseis not present. If no immiscible phaseis present, and all sorption sites on the solid
soil matrix are not occupied’, the vapor or agueous phase concentration is a function of the sorbed
concentration. Thisrelationship isillustrated in Figure 3-3.

This relationship typically follows a Langmuir type curve. If the concentration in the soil isin
excess of the sorption capacity of the soil?, the agueous-phase and vapor-phase concentrations are
Raoult’s law-driven and are independent of the hydrocarbon concentration in the soil. This is an important

concept in attempting to interpret soil gas or groundwater data. For example, in a sandy

! In most soils, this is probably at a concentration of less than 100 to 1,000 mg/kg.
2 In most soils, this is probably at a concentration greater than 100 to 1,000 mg/kg.
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Table 3-1. Values for Key Properties of Select Petroleum Hydrocarbons

p—— = . —
Compound Ko Solubility (mg/L) Vapor Pressure (mm Hg)’
Benzene 131.82 1,750 75
Ethylbenzene 1,349 1522 107°°F
Heptane 50 40
Hexane 20 150
Toluene 489.9 537 2055°F
o-xylene 891 1522 7
m-xylene 1,585 1582 9
p-xylene 1,513.6 1982 9

Vapor pressure at 68°F unless noted.

Calculated at 20°C.
Calculated at 20°C.
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r Raoult's Law Concentration

-—---—-——=

»

Immiscible Phase Immiscible Phase Present,
Absent, Sorption Driven Raoult's Law Driven

Vapor Phase Concentration (ppmv)
or Aqueous Phase Concentration (mg/L)

100-1,000 mg/kg
Soil Concentration (mg/kg)

Figure 3-3.  Relationship Between Sorbed Contaminant Concentration and Vapor- or
Aqueous-Phase Concentrations
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site at which free product has been detected, the highest soil hydrocarbon concentrations may exceed
25,000 mg/kg. Y et 99% remediation to 250 mg/kg may not affect the equilibrium soil gas or
groundwater hydrocarbon concentrations.

Interms of contaminant distribution, difficulties in applying bioventing arise when significant
guantities of the contaminant arein the capillary fringe or below the water table due to groundwater
fluctuations. Treatment of the capillary fringeis possible and screening of venting wells below the water
table is recommended to ensure treatment of this area’. However, the ability of bioventing to aerate the
capillary fringe and underlying water table has not been evaluated. Limited oxygenation is anticipated due
to water-filled pore space. If significant contamination exists below the water table, dewatering should be
considered as a means of exposing any contaminated soil to injected air. Alternatively, a combination of
air sparging and bioventing may provide more efficient air delivery to the capillary fringe; however, air
sparging has not been well-documented and many parameters are still unknown concerning its
applicability and effectiveness.

3.1.3 Oxygen Radius of I nfluence

An estimate of the oxygen radius of influence (R,) of venting wells is an important e ement of a
full-scale bioventing design. This measurement is used to design full-scale systems, specifically to space
venting wells, to size blower equipment, and to ensure that the entire site receives a supply of oxygen-rich
air to sustain in situ biodegradation.

Theradius of oxygen influence is defined as the radius to which oxygen has to be supplied to
sustain maximal biodegradation. This definition of radius of influence is different than is typically used
for SVE, whereradius of influence is defined as the maximum distance from the air extraction or
injection well where vacuum or pressure (soil gas movement) occurs. The oxygen radius of influenceisa
function of both air flowrates and oxygen utilization rates, and therefore depends on site geology, well
design, and microbial activity.

The radius of influenceis afunction of soil properties, but also is dependent on the configuration
of the venting well, extraction or injection flowrates, and microbial activity, and it is altered by soil
stratification. In soils with less-permeable |enses adjacent to more-permeable soils, injection into the
permeable layer will produce a greater radius of influence than could be achieved in homogeneous

! Refer to Section 2.5, Volume Il for adiscussion of vent well construction.
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sails. On sites with shallow contamination, the radius of influence also may be  increased by
impermeabl e surface barriers such as asphalt or concrete. Frequently, however, paved surfaces do not act
as vapor barriers. Without atight seal to the native soil surface, the pavement will not significantly
impact soil gas flow.

Microbial activity will impact the oxygen radius of influence. As microbial activity increases, the
effective treated area will decrease. Therefore, it is desirable to estimate the oxygen radius of influence at
times of peak microbial activity and to design the bioventing system based on these measurements.

3.2 Microbial Processes Affecting Bioventing

Biological treatment approaches rely on organisms to destroy or reduce the toxicity of
contaminants. The advantages of chemical and physical treatment approaches generally are outweighed
by the ability of microorganisms to mineralize contaminants, thereby eliminating the process of
transferring contaminants from one medium (i.e., soil and soil vapor) into another (i.e., activated carbon)
that will still require treatment. In addition, through microbial processes, it is possibleto treat large areas
relatively inexpensively and with relatively noninvasive techniques. This section discusses kinetics of
microbial metabolism and environmental parameters which affect the microbial processes bioventing is
dependent upon, thereby potentially affecting the efficacy of bioventing.

3.2.1 Microbial Kinetics
In biological processes, microorganisms degrade organic compounds either directly to obtain

carbon and/or energy, or fortuitously in a cometabolic process with no significant benefit to the
microorganism. As an example, a stoichiometric equation describing degradation of n-hexane is shown:

! 1t isthe authors experience that at most sites, this seal does not occur.
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CeHis + 7.8750, + 0.25NO; — CH>005Np.25 (bl OmaSS) + 5CO, + 6H,0 (3-6)

In the case of bioventing, where microorganisms are stimulated in situ, the microorganisms are at
equilibrium, and little net biomass growth occurs. In other words, biomass decay approximately balances
biomass growth. Consequently, where no net biomass is produced, Equation (3-6) will reduceto:

CsHis + 9.50, - 6CO, + 7H,0 (3-7)

Based on Equation (3-7), 9.5 moles of oxygen arerequired for every mole of hydrocarbon
consumed, or, on aweight basis, approximately 3.5 g of oxygen arerequired for every 1 g of hydrocarbon
consumed.

To predict the amount of time required to bioremediate a site, it is necessary to understand the
microbial kinetics of substrate (contaminant) utilization. Most substrate utilization falls under the heading
of primary substrate utilization, in which growth on a carbon source supplies most of the carbon and
energy for the microorganism. In cases where a contaminant does not supply the primary source or cannot
be used for carbon and energy, secondary substrate utilization or cometabolism may occur. During the
bioventing process, primary substrate utilization generally describes the kinetics of the reactions taking
place; however, in some instances, cometabolic processes also may occur. For example, at sites
contaminated with both fuels and solvents such as TCE, cometabolic bioventing may account for
degradation of TCE.

Primary substrate utilization has been described through an empirical approach by the Monod

expression:
_ds _ kXS (3-8)
d¢ Kg+8
where: S = concentration of the primary substrate (contaminant) (g¢/L);
t = time (minutes);
k = maximum rate of substrate utilization (gg/gx-min);

X = concentration of microorganisms (gy/L); and
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Ks = Monod half-velocity constant (gs/L).

At high substrate concentrations (S > > Kyg), the rate of substrate utilization is at a maximum,
limited by some other factor such as oxygen, nutrients, or the characteristics of the microorganism. In this
instance, the rate of substrate utilization will be first-order with respect to cell density, but zero-order with
respect to substrate concentration. Conversely, when the primary substrate concentration is very low (S <
< Ks), the substrate utilization rate will be first-order with respect to both cell density and substrate
concentration. In a well-designed bioventing system, kinetics based on oxygen utilization are zero-order.
However, the rate based on petroleum or other contaminant removal may be described by Monod or
inhibition kinetics.

Monaod kinetics have been widely applied to conventional wastewater treatment where the
compounds being treated generally are bioavailable and readily degradable. Bioventing typically is
applied to aerobically biodegradable compounds; however, the maximum rate of biodegradation (k) is
much lower than for most wastes in conventional wastewater treatment. For example, Howard et al.
(1991) estimated that benzene has an aeraobic half-life (dissolved in groundwater) of 10 days to 24
months, whereas ethanol (a compound more typical of conventional wastewater treatment) is estimated to
have a half-life of 0.5 to 2.2 days. Bioventing kinetics are further complicated by bioavailability of the
contaminants, driven at least in part by solubilization. Since microorganisms exist in pore water,
contaminants must partition into the pore water to be available to be degraded. Although high soil
contaminant concentrations may be present, the actual concentration of hydrocarbon dissolved in the pore
water and available to the microorganisrns may be low.

In practice, oxygen utilization rates tend to decline slowly with time during remediation. At many
sites, this trend may be difficult to follow over periods of less than 1 to 3 years because of other variables
affecting the rate, such astemperature and soil moisture. This decline may not be indicative of true
first-order kinetics, but simply may be the result of selective early removal of more degradable
compounds such as benzene.

3.2.2 Environmental Parameters Affecting Microbial Processes

Bioventing is dependent upon providing microorganisms optimal conditions for active growth.
Several factors may affect a microorganism’s ability to degrade contaminants, including:
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availability and type of eectron acceptors;

®* moisture content;

* soil pH;

* soil temperature;

* nutrient availability; and

® contaminant concentration.

Each of these parameters was measured at Bioventing Initiative sites. The actual effect of
individual parameters on microbial activity is difficult to assessin the field due to interference and
interactions among these parameters. The in situ respiration test was used as a measurement tool that
integrates all factors to assess whether the microorganisms are metabolizing the fuel. Data from thein situ
respiration test and site measurements were used to conduct a statistical analyses of the observed effects
of the site measurements on microbial activity in thefield. The statistical analysis was constructed to
account for parameter interactions. These results are discussed in detail in Section 5.0. A more general
discussion of the significance of each of these parameters and its affect on microbial activity is provided
in Sections 3.3.2.1 through 3.3.2.7.

3.2.2.1 Electron Acceptor Conditions

One of the most important factors which influences the biodegradability of a compound is the
type and availahility of eectron acceptors. For example, following a hydrocarbon spill, as aresult of the
hydrocarbon biodegradability, anaerobic conditions typically predominate in the subsurface because of
oxygen depletion from microbial activity. While hydrocarbons may undergo limited biodegradation under
anaerobic conditions (Bilbo et a., 1992; Mormile et al., 1994), in general, aerobic conditions are most
suitable for relatively rapid remediation of petroleum hydrocarbons. Therefore, oxygen supply is critical
to the success of a bioventing system. In field studies, oxygen has been found to be the most important
factor in determining the success of a bioventing system (Hinchee et al., 1989; Miller et al., 1991). This
has been confirmed by the Bioventing Initiative. At these sites, oxygen has been found to the primary
factor limiting microbial activity at all but three sites (Miller et al., 1993).
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3.2.2.2 Moistur e Content

Soil moisture content may impact the bioventing process by its affect on microorganisms or soil
gas permeability. Microorganisms require moisture for metabolic processes and for solubilization of
energy and nutrient supplies. Conversely, soil moisture content directly affects the soil permegbility, with
high moisture contents resulting in poor distribution of oxygen. In practice, soil moisture has been found
to directly limit biodegradation rates only where bioventing has been implemented in very dry desert
environments. A more common influence of moistureis that excess
moisture has led to significant reductions in soil gas permeability. One of the major objectives of the
Bioventing Initiative was to assess the effects of moisture on biodegradation.

The range of soil moisture content measured at Bioventing I nitiative sitesis shown in Figure 3-4.
The lowest soil moisture content measured was 2% by weight, and microbial activity still was observedin
these soils. Figure 3-5 illustrates the observed relationship between soil moisture and oxygen utilization
rates. To date, a strong correlation has not been recorded between moisture content and oxygen utilization
rate, although a slight positive relationship has been observed,

At adesert site at the Marine Corps Air Ground Combat Center, Twenty-nine Palms, California,
soil moisture content appeared to detrimentally affect microbial activity. Soil moisture content ranged
from 2 % to 4 % by weight and, although the site was contaminated with jet fuel, significant oxygen
limitation was not observed. An irrigation system was installed at the sitein an effort to enhance
microbial activity. The sitewas irrigated for 1 week, then bioventing was initiated for 1 month before
conducting an in Situ respiration test. In situ respiration rates measured after irrigation were significantly
higher than those measured prior to irrigation (Figure 3-6). In addition, prior to irrigation, oxygen was not
consumed below approximately 17% before microbial activity stopped. After irrigation, activity
continued until oxygen was completely consumed to less than 1%. These results demonstrated that, in
extreme cases, moisture addition may improve the performance of bioventing systems through enhanced
microbial activity.

It may be assumed that air injection bioventing will dry out the soil to a point what would be
detrimental to microbial growth, necessitating humidification of the injection air. However, asimple
calculation as shown in Example 3-1 illustrates that over a 3-year period, moisture loss is minimal.

! Refer to Section 5.2 for a discussion of the statistical relationship between moisture content and oxygen
utilization rates.



Volume I: Bioventing Principles 36 September 29, 1995

Frequency (Number of Sites)

<5 5-10 10-15 15-20 20-25 >25

Moisture Content (% by weight)

€ \photSOumammimoisnre. ap$

Figure 3-4. Soil Moisture Content Measurements at Bioventing Initiative Sites
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Drying and moisture loss as aresult of bioventing usually are a problem only very near the vent well or if
very high air injection rates are used (typically no the casein properly designed bioventing systems).

Sites typically have several moisture sources that also make drying dueto air injection negligible, such as
rain and snow, and water as a byproduct of mineralization (generated at arate of 1.5 kg water for every 1

Example 3-1. Moisture Content Change During Air Injection and Water Generated
During Biodegradation: For this test:

Vapor pressure (Pyq.r) = 17.5 mm Hg

Flowrate (Q) = 1 pore volume/day, typical of bioventing
Volume of treatment area (V) = 12,300 m°

Biodegradation rate (kp) = 3 mg/kg-day

Initial moisture content = 15% by weight

Soil bulk density = 1,440 kg/m®

Assume worst case of 0% humidity and no infiltration.
To calculate the total water at the site initially, the mass of soil is first calculated:

12,300 m® x 2A90KE _ 18 107 kg soil
m

Therefore, the initial mass of water is:

(1.8 x 107 kg soil) x 0.15 = 2.7 x 10 kg H,0

Since the flowrate is equivalent to one pore volume/day, the mass of water removed
per day will be equal to the mass of water in the vapor phase of the treated area,
which can be calculated using the Ideal Gas law:

Moles H,O removed P,V _ 17.5 mmHg x 12,300 m®

day RT 3_
00623 M -mmHg} . o9k
mole-°K

kg of hydrocarbon degraded®).

! Refer to Equation (3-7) for the stoichiometry of this calculation.
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Mol
o}es H,o removed - 11,600 = 210 3;
day day

Total water removal in 3 years:

210 d% x 1,005 days = 230,000 kg removed
y

This water loss represents a fairly small percentage, or:

230,000 kg evaporated _ ¢ 56 - g.6% H,0 loss
2.7 x 10° initial mass

This is equivalent to a soil moisture drop from approximately 15% to 13.7%.
Assuming a contaminated thickness of 10 ft (3 m), an infiltration rate of
approximately 2.4 inches (6.1 cm) in 3 years, or less than 1 inch (2.5 cm) per year,
would replace the lost moisture. In practice, some drying very close to the vent well
may be observed, but usually is not.

Water loss also will be replaced through biodegradation of hydrocarbons. Calculating
the total mass of hydrocarbons degraded over 3 years:

3 2, 1095 days x (1.8 x 10kg soil) x —B— = 59,000 kg hydrocarbon degraded
kg-day 10°mg

Based on the stoichiometry in Equation (2-1), 1.5 kg of water are generated for every
kg of hydrocarbon degraded, the amount of water generated would be:

1.5 kg water
,000 drocarbon x ———=——— = 88,500 ter
59 kg hy x g Iy 500 kg wa

Therefore, total water removal in three years must also account for the water
generation, where:

230,000 kg - 88,500 kg H,0 = 141,500 kg H,0 loss

This is equivalent to a water loss of 5.3% over 3 years.
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3.2.2.3 Soil pH

Soil pH also may affect the bioremediation process, since microorganisms require a specific pH
rangein order to survive. Most bacteria function best in a pH range between 5 and 9 with the optimum
being dightly above 7 (Dragun, 1988). A shift in pH may result in a shift in the makeup of the microbial
population, because each species will exhibit optimal growth at a specific pH. Throughout the Bioventing
Initiative, pH has not been found to limit in situ bioremediation, and is probably only of concern where
contamination has radically altered the existing pH.

Figure 3-7 illustrates the range of soil pH found at the Bioventing Initiative sites to date. In
general, the majority of sites have fallen within the “optimal” pH range for microbial activity of 5 to 9.
However, microbial respiration based on oxygen utilization has been observed at all sites, even in soils
where the pH was below 5 or above 9. Figure3-8 illustrates the observed relationship between pH and
oxygen utilization rates. Based upon these observations, it appears that pH is not a concern when
bioventing at most sités

3.2.2.4 Soil Temperature

Soil temperature may significantly affect the bioremediation process. Microbial activity has been
reported at temperatures varying from -12 to 100°C (10 to 212°F) (Brock et al., 1984); however, the
optimal range for biodegradation of most contaminants is generally much narrower. An individual
microorganism may tolerate a temperature peak of up to approximately 40°C (104°F). However, a
microorganism's optimal growth temperature will vary depending on climate. For example,
microorganisms in a subarctic environment may exhibit optimal growth at 10°C (50°F), whereas
microorganisms in a subtropical environment may exhibit optimal growth at 30°C (86°F).

It has generally been observed that biodegradation rates double for every 10°C (50°F)
temperature increase, up to some inhibitory temperature. The van't Hoff-Arrhenius equation expresses
this relationship quantitatively as:

! Refer to Section 5.2 for a discussion of the statistical relationship between pH and oxygen utilization
rates.
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Frequency (Number of Sites)

<50 5060 6065 6570 7075 7580 8085 8590 >90

pH

c:\plotSONnamal\ph. oS

Figure 3-7. Soil pH Measurements at Bioventing Initiative Sites
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— R (3-9)
where: kr = temperature-corrected biodegradation rate (% O,/day)
k, = baseline biodegradation rate (% O,/day)
E, = activation énergy (cal/molé)
R = gas constant (1.987 cal/°K-mol)
Ts = absolute temperature (°K)

Miller (1990) found E, equal to 8 to 13 kcal/mole for in situ biodegradation of jet fuel. In
the 17 to 27°C (63 to 81°F) range, the van’t Hoff-Arrhenius relationship accurately predicted
biodegradation rates. A similar analysis was conducted at Site 20, Eielson AFB, Alaska, where the
activation energy was found to be equal to 13.4 kcal/mole (Example 3-2). Figure 3-9 illustrates the
relationship between oxygen utilization rate and temperature observed at Site 20, Eielson AFB, a JP4
jet fuel-contaminated site.

Example 3-2. Calculation of the van't Hoff-Arrhenius Constant From Site Data:
Various forms of soil warming were tested at Site 20, Eielson AFB, Alaska. This
resulted in a wide range of temperatures and biodegradation rates measured at the
same site.

In order to calculate the van’t Hoff-Arrhenius constant, the log of the biodegradation
rate must be calculated versus the inverse of the temperature to provide the

relationship:

1,,(;"1) N | (3-10)
k) R T

The slope of the linear regression of inverse temperature versus oxygen utilization rate
is —6740°K (Figure 3-9). . Therefore,

E
=t - - 6740
R
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Figure 3-9. Soil Temperature Versus Biodegradation Rate at Site 20, Eielson AFB, Alaska
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—_— = -6740

1987 ————
°K -mole

cal . _ 6740 = 13390 A . 134 k2l

E, = 1.987 °K -mole mole mole

Heat addition may improve bioventing processes. Solar warming, warm water infiltration, and
buried heat tape have been used to increase soil temperature. Their use has resulted in increased microbial
activity and contaminant degradation (Leeson et al., 1995). Sdection of a soil warming technique will
depend on cost considerations versus remediation time requirements'. While warm water infiltration or
hest tape can significantly increase biodegradation rates, the cost is significantly higher than simply using
surfaceinsulation or no heating method. The use of warm water infiltration, although effective, is limited
to very permeable soils, to ensure that adequate drainage of the applied water will occur. The use of soil
heating to increase biodegradation rates may prove cost effective only in cold regions, such as Alaska.

3.2.2.5 Nutrient Supply

In order to sustain microbial growth, certain nutrients must be available at minimum levels. The
following nutrients/cofactors are known to be required in order to support microbial growth: calcium,
cobalt, copper, iron, magnesium, manganese, molybdenum, nitrogen, phosphorus, potassium, sodium,
sulfur, and zinc. Nitrogen and phosphorus are required in the greatest concentrations and are the nutrients
most likely to be limiting. The remaining chemicals are considered micronutrients, because they are
required in only small quantities and generally are availablein excess in nature.

Nutrients are required as components of the microbial biomass. The need for these nutrientsis
very different from the need for oxygen (or other electron donors) and the carbon source.

! Refer to Section 4.4 for adiscussion of the cost benefit of soil warming.
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Nutrients are not destroyed, but are recycled by the ecosystem. Thus, like oxygen, a steady input of
nutrients is not required.

An approach to estimation of nutrient requirements, suggested by John T. Wilson of the U.S.
EPA AdaLaboratory, can be made based on microbial kinetics. Starting with:

X ok Y-KX (3-11)
dt
where: X = biomass (mg biomass/kg soil)
kg = biodegradation rate (mg hydrocarbon/kg soil-day)
Y = cell yield (mg biomass/mg hydrocarbon)
Ky = endogenous respiration rate (day™)

Assuming that the biomass concentration achieves steady state during bioventing,

%=0=knY—kdX 3-12)
Solving:
x-%Y (3-13)
kd

Littleis known about thein situ cell yields or endogenous respiration rates of
hydrocarbon-degrading organisms, but these parameters can be estimated based on ranges reported in the
wastewater treatment literature (Metcalf and Eddy, 1979). An examplefor calculating required nutrients
is shown in Example 3-3.

Example 3-3. Estimation of Nutrient Requirements In Stu: For a given site, thefollowing is
assumed:

ks = 10 mg/kg-day (typical rate found at bioventing sites)
Y = 0.5mg/mg
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k, =  0.05/day
Solving:
10 28 .05 28
X = kg-day Mg _ 100 &
005 T ke
day

To sustain 100 mg/kg of biomass, the nutrient requirements may be estimated from
biomass to nutrient ratios. A variety of ratios are found in the literature. For this
example, a 100:10:1 ratio of biomass:nitrogen:phosphorus is assumed. This ratio
yields a nutrient requirement of 10 mg/kg of nitrogen and 1 mg/kg of phosphorus.
Thus, if the above assumptions hold, a site with at least these levels of nitrogen and
phosphorus initially should not be rate-limited by nitrogen and phosphorus.

Most soils naturally contain nutrients in excess of the concentrations calculated in Example 3-3.
Therefore, although the addition of nutrients may be desirable in hopes of increasing biodegradation
rates, field research to date does not indicate the need for these additions (Dupont et al., 1991; Miller &
al., 1991). Therefore, although nutrients are often added to bioremediation projects in anticipation of
increased biodegradation rates, field data to date do not show a clear relationship between increased
rates and supplied nutrients.

Concentrations of total Kjeldahl nitrogen (TKN) and total phosphorus at the Bioventing Initiative
sites and the corresponding relationship between oxygen utilization rates are shown in Figures 3-10
through 3-13. Although optimal ratios of carbon, nitrogen, and phosphorus were not available at all sites,
the natural nutrient levels were sufficient to sustain some level of biological respiration at all sites when
the most limiting element, oxygen, was provided.

In controlled nutrient additions at Tyndall and Hill AFBSs', no apparent increase in microbial
activity was observed. Therefore, there appeared to be no benefit of nutrient addition. The relationship
between oxygen utilization rates and TKN and total phosphorus are shown in Figures 3-11 and 3-13,
respectively. Asisillustrated in these figures, there is no correlation between phosphorus and oxygen
utilization rates and only a weak relationship between TKN concentrations

! Refer to Sections 4.1 and 4.2 for detailed discussions of these sites.
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Frequency (Number of Sites)
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Figure 3-10. TKN Measurements at Bioventing Initiative Sites
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Figure 3-11. Correlation Between Oxygen Utilization Rate and TKN at Bioventing Initiative
Sites
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Figure 3-12. Total Phosphorus Measurements at Bioventing Initiative Sites
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Figure 3-13.  Correlation Between Oxygen Utilization Rate and Total Phosphorus at Bioventing
Initiative Sites
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and oxygen utilization rates, again emphasizing that natural ambient nutrient levels seem sufficient for
microbial activity™.

Figure 3-14 illustrates the range of iron concentrations measured at Bioventing Initiative sites. Iron
concentrations varied greatly, with concentrations from less than 100 mg/kg to greater than 75,000 mg/kg.
Soilsin Hawaii and Alaska exhibited the highest iron contents. Although ironis a nutrient required for
microbial growth, iron also may react with oxygen to form iron oxides. Theoretically, if a significant
amount of iron oxidation occurs, the observed oxygen utilization rate’ would not reflect microbial activity
only. Therefore, calculated biodegradation rates would be an overestimate of actual biodegradation rates.
Thus, background wells in uncontaminated areas are recommended in bioventing applications in areas of
high iron concentrations. To date, this study has shown no correation between iron content and oxygen
utilization rates (Figure 3-15).

3.2.2.6 Contaminant Concentr ation

Contaminant concentration also may affect biodegradation of the contaminant itself. Excessive
guantities of a contaminant can result in a reduction in biodegradation rate due to atoxicity effect.
Conversdly, very low concentrations of a contaminant also may reduce overall degradation rates because
contact between the contaminant and the microorganism is limited and the substrate concentration is
likely below Syn.

In practice, petroleum hydrocarbons in fuel mixtures do not generally appear to betoxic to the
bioventing process. Other more soluble (i.e., phenolics) or less biodegradable compounds (i.e., TCE) may
exhibit atoxicity effect and it has been reported that pure benzene may be toxic. Although a general
relationship between bioventing rates and concentration no doubt exists, the relationship is complex and
not fully understood. At sites where NAPL s are present (soil concentrations above the 100 to 1,000 mg/kg
range), the bioavailable hydrocarbon is most probably limited by solubilization, which is linked to
Raoult’s law and, to an extent, is independent of total hydrocarbon concentration. Certainly, the NAPL
distribution can affect the proportion of the soil in a sitein which biodegradation

! Refer to Section 5.2 for a discussion of the statistical relationship between nutrients and oxygen
utilization rates.

2 As measured by in situ soil gas oxygen concentrations.
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Figure 3-14. Iron Concentration Measurements at Bioventing Initiative Sites
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Figure 3-15. Correlation Between Oxygen Utilization Rates and Iron Content at Bioventing
Initiative Sites
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is occurring, and at lower concentrations less soil may bein direct contact with NAPLS. It islikely that
the reduction in biodegradation rates observed over time on many sitesis due at least in part to changes in
the hydrocarbon makeup as the more degradable and more maobile compounds (i.e., benzene, toluene,
ethylbenzene, and xylenes) are removed. At lower hydrocarbon concentrations where NAPLs are not
present, a decline in rate would be expected with time as the available substrate is removed.

3.2.2.7 Bioavailability and Relative Biodegradability

Another critical parameter affecting the extent of in situ bioremediation is bioavailability of the
contaminant(s) of concern. Bioavailability is a general term to describe the accessibility of contaminants
to the degrading populations. Bioavailability consists of (1) a physical aspect related to phase distribution
and mass transfer, and (2) a physiological aspect related to the suitability of the contaminant as a substrate
(U.S. EPA, 1993, EPA/540/S-93i501). Compounds with greater aqueous solubilities and lower affinities
to partition into NAPL or to sorb onto the soil generally are bioavailable to soil microorganisms and are
more readily degraded. For example, BTEX is preferentially degraded relative to the larger alkanes found
infuds. The most likely explanation for thisis that BTEX is more mobile and more solublein pore water
and thereforeis more bioavailable.

3.3 Compounds Targeted for Removal

Any aerobically biodegradable compound, such as petroleum hydrocarbons, potentially can be
degraded though bioventing. To date, bioventing has been applied primarily to petroleum hydrocarbons
(Table 2-2); however, bioventing of PAHs (Lund et al., 1991; Hinchee and Ong, 1992; Alleman et a.,
1995) and bioventing applied to an acetone, toluene, and naphthal ene mixture (Leeson et al., 1994) have
been implemented successfully.

The key to bioventing feasibility in most applications is biodegradability versus volatility of the
compound. If therate of volatilization greatly exceeds the rate of biodegradation, bioventing is unlikely to
be successful, as removal occurs primarily through volatilization. This will occur most often in those
cases where the contaminant is a fresh, highly volatile fuel. An unsuccessful bioventing application is
unlikely to occur dueto alack of microbial activity. If bioventing is operated in the injection mode as
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recommended by this manual, volatilized contaminants may be biodegraded before reaching the surface,
unlike during an extraction operation®. Figure 3-16 illustrates the relationship between a compound's
physicochemical properties and its potential for bioventing.

In general, compounds with alow vapor pressure” cannot be successfully removed by
volatilization, but can be biodegraded in a bioventing application if they are aerobically biodegradable.
High vapor pressure compounds are gases at ambient temperatures. These compounds volatilize too
rapidly to be easily biodegraded in a bioventing system, but typically are a small component of fuels and,
dueto their high volatility, will attenuate rapidly. Compounds with
vapor pressures between | and 760 mm Hg may be amenable to either volatilization or biodegradation.
Within this intermediate range lie many of the petroleum hydrocarbon compounds of greatest regulatory
interest, such as benzene, toluene, ethylbenzene, and the xylenes. As can be seen in Figure 3-16, various
petroleum fuels are more or less amenable to bioventing. Some components of gasoline are too volatile to
easily biodegrade, but, as stated previously, typically are present in low overall concentrations and are
attenuated rapidly. Most of the diesel constituents are sufficiently nonvolatile to preclude volatilization,
whereas the constituents of JP-4 jet fud are intermediate in volatility.

To be amenable to bioventing, a compound must (1) biodegrade aerobically at arateresulting in
an oxygen demand greater than the rate of oxygen diffusion from the atmosphere, and (2) biodegrade at a
sufficiently high rate to allow in situ biodegradation before volatilization. Practically, this means that low
vapor pressure compounds need not biodegrade as rapidly as high vapor pressure compounds for
bioventing to be successful. Figure 3-17 illustrates this relationship. The actual feasibility of bioventing is
very site-specific and Figures 3-16 and 3-17 should not be used as
absolutes, but rather as general guidelines.

Bioventing generally is not considered appropriate for treating compounds such as
polychlorinated biphenyls (PCBs) and chlorinated hydrocarbons. However, through a cometabolic
process, it may be possible to enhance the degradation of compounds such as TCE through

! Refer to Section 2.1, Volume |1 for a discussion of air injection versus extraction.

2 For the purposes of this discussion, compounds with vapor pressures below approximately | mm Hg are
considered low, and compounds with vapor pressures above approximatey 760 mm Hg are considered
high.
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bioventing. In laboratory studies, it has been shown that if toluene is present to provide the primary
source of carbon, organisms that grow on toluene may be able to cometabolize TCE (Wackett and
Gibson, 1992). More recently, Hopkins et al. (1993) demonstrated TCE degradation in situ through the
injection of oxygen and phenol into an aquifer. TCE removal of 88 % was observed in the field
indicating the potential for cometabolic degradation of chlorinated compounds in situ.

3.4BTEX Versus TPH Removal in Petroleum-Contaminated Sties

BTEX generally are the compounds that are regulated most stringently. Typically, these
compounds degrade very rapidly during bioventing, and at most sites, are degraded to below detection
limits within 1 year of operation of a bioventing system. This trend was illustrated in a study at Tyndall
AFB* and has been confirmed at 81 sites completing the 1-year testing under the Bioventing Initiative. At
Tyndall AFB, two test plots were studied with initial hydrocarbon concentrations of 5,100 and 7,700
mg/kg. After 9 months of bioventing, TPH was reduced by 40% from theinitial concentration. However,
the low-mol ecular-weight compounds such as BTEX were reduced by more than 90% (Figure 3-18). The
low-molecular-weight compounds were preferentially degraded over the heavier fuel components, which
is consistent with previous research (Atlas, 1986).

If arisk-based approach to remediation is used that focuses on removing the soluble, mobile, and
moretoxic BTEX components of the fuel, remediation times can be reduced significantly, making
bioventing an attractive technology for risk-based remediations. In addition, the BTEX compounds often
areinitially at relatively low levels at many fuel-contaminated sites as illustrated by results from the
Bioventing Initiative. Data collected from the majority of the Bioventing Initiative sites demonstrate that
more than 85 % of initial soil samples contained less than 1 mg/kg of benzene (Figure 3-19). An
exception to this may be gasoline-contaminated sites; the majority of sites included in the Bioventing
Initiative were contaminated with heavier weight contaminants. Only 19 of 125 Bioventing Initiative sites
were contaminated by gasoline or AVGAS.

! Refer to Section 4.2 for a case history of the bioventing study at Tyndall AFB, Florida.
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4.0 BIOVENTING CASE HISTORIES

Four of the first well-documented bioventing studies are presented in this section to illustrate
significant results which have contributed to the development of bioventing, the Bioventing Initiative, and
this document. The development of the Bioventing Initiative was based largely upon the results from
these four early studies, which are discussed in detail in this section. Site 914, Hill AFB, Utah, was one of
thefirst bioventing systems studied. This study was designed to examine the feasibility of biodegradation
through air injection, and also to investigate the effect of nutrient and moisture addition on
biodegradation. The second site was a bioventing system at Tyndall AFB, Florida, initiated in 1990. This
study was short-term (9 months), but was designed to examine process variables in more detail than was
possible at Site 914, Hill AFB. Thethird site discussed in this chapter was conducted at Site 280, Hill
AFB, Utah. This study was initiated in 1991 as a bioventing site and was operated for approximately 3
years. Research on air flowrates and injection depth was carried out at this site. The fourth study
presented in this chapter was conducted at Eielson AFB, Alaska. This study was initiated in 1991 asa
bioventing system and was operated for 3 years. This study was conducted to examine the feasibility of
bioventing in a subarctic climate as well as to evaluate the effects of soil warming on biodegradation
rates.

A case history of the Fire Training Area, Battle Creek Air National Guard Base (ANGB) also is
presented in this chapter. This site was included in the Bioventing Initiative, but additional samples were
collected at the end of the 1-year study as part of a separate project. The results from this study illustrate
typical installations and results from a Bioventing Initiative site, and provide additional data on BTEX
contamination after 1 year of bioventing.

These case histories are not presented as design examples, because they were designed as
research efforts. In fact, these studies have been the basis for devel opment of current design practice as
presented in Volume |1 of this document. Details of each of these studies are presented in the following
sections.

4.1 Site914, Hill AFB, Utah

A spill of approximately 27,000 gallons of JP-4 jet fuel occurred at Site 914 when an automatic
overflow devicefailed. Contamination was limited to the upper 65 ft (20 m) of a ddta outwash of the
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Weber River. Thissurficial formation extends from the surface to a depth of approximately 65 ft (20 m)
and is composed of mixed sand and gravel with occasional clay stringers. Depth to regional groundwater
is approximately 600 ft (180 m); however, water occasionally may be found in discontinuous perched
zones. Soil moisture averaged less than 6% by weight in the contaminated soils.

The collected soil samples had JP-4 jet fuel concentrations up to 20,000 mg/kg, with an average
concentration of approximatey 400 mg/kg (Oak Ridge National Laboratory, 1989). Contaminants were
unevenly distributed to depths of 65 ft (20 m). Vent wells were drilled to approximately 65 ft (20 m)
below the ground surface and were screened from 10 to 60 ft (3 to 20 m) below the surface. A
background vent well was installed in an uncontaminated location in the same geologic formation
approximately 700 ft (210 m) north of the site.

This system originally was designed for SVE, not for bioventing. During theinitial 9 months of
operation, it was operated to optimize volatilization, while biodegradation was merely observed. After
this period, air flowrates were greatly reduced, and an effort was made to optimize biodegradation and
limit volatilization.

Sail vapor extraction was initiated in December 1988 at a rate of approximately 25 cubic ft per
minute (cfm) (710 L/min). The off-gas was treated by catalytic incineration, and initially it was necessary
to dilute the highly concentrated gas to remain below explosive limits and within the incinerator’s
hydrocarbon operating limits. The venting rate was gradually increased to approximately 1,500 cfm (4.2 x
104 L/min) as hydrocarbon concentrations dropped. During the period between December 1988 and
November 1989, more than 3.5 x 108 ft3 (9.9 X LD of soil gas were extracted from the site.

In November 1989, ventilation rates were reduced to between approximately 300 and 600 cfm
(8,500 to 17,000 L/min) to provide aeration for bioremediation while reducing off-gas generation. This
change allowed removal of the catalytic incinerators, saving approximately $13,000 per month in rental
and propane costs.

Hinchee and Arthur (1991) conducted bench-scale studies using soils from this site and found
that, in the laboratory, both moisture and nutrients appeared to become limiting after aerobic conditions
had been achieved. These findings led to the addition of first moisture and then nutrients in the field.
Moisture addition clearly stimulated biodegradation, whereas nutrient addition did not (Figure 4-1). The
failure to observe an effect of nutrient addition could be explained by a number of factors:
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1. Thenutrients failed to move in the soils, which is a problem particularly for ammonia and
phosphorus (Aggarwal et al., 1991).

2. Remediation of the site was entering its final phase and nutrient addition may have been too
late to result in an observed change.

3. Nutrients simply may have not been limiting.

During extraction, oxygen and hydrocarbon concentrations in the off-gas were measured. To
quantify the extent of biodegradation at the site, the oxygen was converted to an equivalent basis. This
was based on the stoichiometric oxygen requirement for hexane mineralization®. Hydrocarbon
concentrations were determined based on direct readings of a total hydrocarbon analyzer calibrated to
hexane. Based on these calculations, the mass of JP-4 jet fud as carbon removed was approximately
1,500 pounds volatilized and 93,000 pounds biodegraded (Figure =1). After a 2-year period, cleanup and
regulatory closure were achieved (Figure 4-2).

Theresults of this study indicated that aerobic biodegradation of JP-4 jet fuel did occur in the
vadose zone at Site 914. Biodegradation was increased by soil venting at this site because, prior to
venting, biodegradation appeared to have been oxygen limited. The SVE system, designed to volatilize
thefuel, stimulated in situ biodegradation with no added nutrients or moisture. In this study,
approximately 15% of the documented field removal observed at the site was the result of
microbial-mediated mineralization to carbon dioxide. Additional biological fuel removal by conversion to
biomass and degradation products no doubt occurred, but was not quantified.

From this study, it was apparent that further studies of field biodegradation in unsaturated soils
were needed to develop a better understanding of the effects of such variables as oxygen content, nutrient
requirements, soil moisture, contaminant levels, and soil type on the limitation and optimization of
bioventing of contaminated field sites. Also, further studies of gas transport in the vadose zone were
needed to ensure adequate design of air delivery systems.

Further details of this study may be found in Dupont et al. (1991) and Hinchee et al. (1991b).

! Refer to Section 3.3, Volume I for a discussion of this calculation.
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4.2 Tyndall AFB, Florida

A more controlled study than was possible at Site 914, Hill AFB was designed at Tyndall AFB as
afollow-up to the Hill AFB research. The experimental area in the Tyndall AFB study was located at a

site where past JP-4 jet fuel storage had resulted in contaminated soils. The nature and volume of fuel

spilled or leaked were unknown. The site soils were a fine- to medium-grained quartz sand. The depth to
groundwater was 2 to 4 ft (0.61to 1.2 m).
Thefield study was designed with the following objectives:

to determine whether bioventing enhanced biodegradation of JP-4 jet fuel at this site;

to determine whether moisture addition coupled with bioventing enhanced biodegradation
rates,

to determine whether nutrient addition coupled with bioventing enhanced biodegradation
rates,

to evaluate flowrate manipulation to maximize biodegradation and minimize volatilization;
and

to calculate specific biodegradation rate constants from a series of respiration tests conducted
during shutdown of the air extraction system.

Four test cells were constructed to allow control of gas flow, water flow, and nutrient addition.
Test cells V1 and V2 were installed in the hydrocarbon-contaminated zone; test cells V3 and V4 were
installed in uncontaminated soils. Test cells were constructed and operated in the following manner:

V1 (uncontaminated): Venting for approximately 8 weeks, followed by moisture addition for
approximately 14 weeks, followed by moisture and nutrient addition for approximately 7
weeks.

V2 (uncontaminated): Venting coupled with moisture and nutrient addition for 29 weeks.

V3 (uncontaminated): Venting with moisture and nutrient addition at rates similar to V2, with
injection of hydrocarbon-contaminated off-gas from V1. Operation was conducted at a series
of flowrates and retention times.
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* V4 (uncontaminated): Venting with moisture and nutrient addition at rates similar to V2.

Initial site characterization indicated the mean soil hydrocarbon levels were 5,100 and 7,700 mg
of hexane-equivalent/kg in treatment plots V1 and V2, respectively. The contaminated area was
dewatered, and hydraulic control was maintained to keep the depth to water at approximately 5.25 ft (1.6
m). This exposed more of the contaminated soil to aeration. During normal operation, air flowrates were
maintained at approximately one air-filled void volume per day.

Biodegradation and volatilization rates were much higher at the Tyndall AFB site than those
observed at Hill AFB. These higher rates were likely dueto higher average levels of contamination,
higher temperatures, and higher moisture content. Biodegradation rates during bioventing ranged from
approximately 2 to 20 mg/kg-day, with average values of 5 mg/kg-day. After 200 days of aeration, an
average hydrocarbon reduction of approximately 2,900 mg/kg was observed. This represented a reduction
in total hydrocarbons of approximatey 40%.

Another important observation of this study was the effect of temperature on the biodegradation
rate. Miller (1990) found that the van't Hoff-Arrhenius equation provided an excellent model of
temperature effects. In the Tyndall AFB study, soil temperature varied by only approximately 7°C
(44.6°F), yet biodegradation rates were approximately twice as high at 25°C (77°F) than at 18°C (64.4°F).

Operational data and biodegradation rates indicated that soil moisture and nutrients were not
limiting factors in hydrocarbon biodegradation for this site (Figure 4-3). The lack of moisture effect
contrasts with the Hill AFB findings, but most likely is the result of contrasting climatic and
hydrogeologic conditions. Hill AFB is located in a high-elevation desert with a very deep water table.
Tyndall AFB is located in a moist, subtropical environment, and at the site studies, the water table was
maintained at a depth of approximately 5.25 ft (1.6 m). The nutrient findings support field observations at
Hill AFB that the addition of nutrients does not stimulate biodegradation. Based on acetylene reduction
studies, Miller (1990) speculated that adequate nitrogen was present due to nitrogen fixation. Both the
Hill and Tyndall AFB sites had been contaminated for several years before the bioventing studies began,
and both sites were anaerobic. It is possible that nitrogen fixation, which is maximized under these
conditions, provided the required nutrients. In any case, these findings show that nutrient addition is not
always required.
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Inthe Tyndall AFB study, a careful evaluation of the relationship between air flowrates and
biodegradation and volatilization was made. It was found that extracting air at the optimal rate for
biodegradation resulted in 90% removal by biodegradation and 10% removal by volatilization. It was also
found that passing the contaminants volatilized in the off-gas through clean soil resulted in complete
biodegradation of the volatilized vapors.

In situ respiration tests documented that oxygen consumption rates followed zero-order kinetics
and that rates were linear down to 2 to 4% oxygen. Therefore, air flowrates can be minimized to maintain
oxygen levels between 2 and 4% without inhibiting biodegradation of fuel, with the added benefit that
lower air flowrates will increase the percent of removal by biodegradation and decrease the percent of
removal by volatilization.

The study was terminated because the process monitoring objectives had been met;
bi odegradation was still vigorous. Although the TPH had been reduced by only 40% by the time of study
termination, the low-molecular-weight aromatics—the BTEX components—were reduced by more than
90% (Figure 3-18). It appeared that the bioventing process more rapidly removed the BTEX compounds
than the other JP-4 fuel constituents.

Results from this study demonstrated the effectiveness of bioventing for remediating fuel-
contaminated soils, the ineffectiveness of moisture or nutrient addition for increasing in situ
biodegradation rates, and the importance of air flowrates for optimizing biodegradation over
volatilization. However, it was evident from this study that a long-term bioventing study was necessary to
examine process variables. This led to the initiation of the Site 2B@\RB and the Site 20, Eielson
AFB projects described in the following sections.

Further details of the Tyndall AFB study may be found in Miller (1990) and Miller et al. (1991).

4.3 Site 280, Hill AFB, Utah

A key objective of the study at Site 280 was to optimize the injection air flowrates. These efforts
were intended to maximize biodegradation rates in JP-4 jet fuel-contaminated soils while minimizing or
eliminating volatilization. The site studied was a JP-4 jet fuel spill at Hill AFB that had existed since
sometime in the 1940s (Figure 4-4). The geology was similar to that of Site 914, but the average
contaminant levels were slightly higher (Figure 4-5). Vent wells were installed to a
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depth of approximately 110 ft and groundwater was at a depth of approximately 100 ft.

From November 1992 through January 1995, a number of studies were conducted to evaluate
low-intensity bioremediation at Site 280. These efforts included (1) varying the air injection flowrates in
conjunction with in situ respiration tests, and (2) surface emissions testing to provide information for
system optimization.

Five air flowrate evaluations were conducted at Site 280 from 1991 through 1994 (28, 67, 67, 40,
and 117 ¢fm[790, 1,900, 1,900, 1,100, and 3,300 L/min]). Each evaluation was followed by in situ
respiration testing. The 67 cfm (1,900 L/min) study was repeated to include additional soil gas monitoring
points added to the site. Monthly soil gas monitoring was conducted at Site 280 to measure the
concentrations of oxygen, carbon dioxide, and TPH at each sampling point following system operation at
each of the different air flowrates.

Surface emissions tests were conducted during each air injection test and while the air injection
system was turned off. In each of the surface emissions tests, no significant differences were found
between the periods of air injection and no air injection. TPH soil gas levels measured during the air
injection periods averaged approximately 70 ppmv, while TPH soil gas levels during resting periods
averaged 42 ppmv. These averages were not found to be statistically different. Likewise, surface
emissions rates were not significantly different at different flowrates.

Final soil sampling was conducted in December 1994. Results from the initial and final BTEX
and TPH samples are shown in Figures 4-6 and 4-7, respectively. Results shown represent soil samples
within a O- to 25-ft radius of the injection well and a 25- to 75-ft radius. In general, BTEX and TPH
concentrations decreased at all depths within the 25-ft radius from the vent well, with the exception of the
samples collected at a depth of 90 to 100 ft. Samples taken from this depth are located at the capillary
fringe, and it is likely that adequate aeration was not possible at that location. Samples collected beyond
the 25-ft radius were less conclusive, indicating that this area was not aerated.

Further details of the Site 280, Hill AFB study may be found in Sayles et al. (1994b).

4.4 Site 20, Eielson AFB, Alaska

The abjective of the Eielson AFB study was to install and operate an in situ soil bioremediation
system to investigate the feasibility of using bioventing to remediate JP-4 jet fuel
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contamination in a subarctic environment and to actively increase soil temperature to determine to what
degreeincreased soil temperature can enhance the biodegradation rates of JP-4 contaminants in soil. This
study comprised four test plots: (1) onein which heated groundwater was circulated through the test plot
(active warming test plat); (2) one in which plastic sheeting was placed over the ground surface of the test
plot during the spring and summer months to capture solar heat and passively warm the soil (passive
warming test plot); (3) onein which heat tape was installed in the test plot to heat the soil directly (surface
warming test plot); and (4) a control test plot, which received air injection but no soil warming (control
test plot). In addition, an uncontaminated background location also received air injection but no soil
warming to monitor natural background respiration rates. The site soils were a sandy silt, with increasing
amounts of sand and gravel with depth. Groundwater was typically at approximately the 7-ft depth.
Figure 4-8illustrates site geol ogic features and typical construction details of site installations.

Differences in soil temperatures were significant among the four test plots (Figure 4-9). Whenin
operation, the active warming test plot consistently maintained higher temperatures than the other test
plots during the winter months. In the passive warming test plot, plastic sheeting increased soil
temperature, with average soil temperatures as high at 18°C (64.4°F) during the summer months,
compared to average temperatures of approximately 10°C (50°F) in the control test plot. A

significant feature of this soil warming technique was that the addition of plastic sheeting in the
spring caused a rapid increase in soil temperature, nearly 6 to 8 weeks sooner than in the unheated test
plots. The early heating significantly increased the period of rapid microbial degradation. During the
winter months, the passive warming test plot remained warmer than the control test plot.

Respiration rates were measured quarterly in each test plot. Of particular interest were rates
measured in the control test plot. It was expected that no substantial microbial activity would occur during
the winter months in unheated test plots due to the extreme temperatures. However, significant microbial
activity was consistently measured in the control test plot, even at soil temperatures just below freezing
(Figure 4-10). Respiration rates in the passive warming test plot were observed to increase nearly one
order of magnitude as soil temperature increased during the summer months, indicating the success of the
use of plastic sheeting to promote soil warming (Figure 4-10). Respiration rates measured in the active
warming test plot were higher than those measured in the passive warming or control test plot when warm
water circulation was operating. Warm water circulation was discontinued in fall 1993, and as the soil
temperature dropped, no significant microbial activity could be measured in the test plot during winter
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months. This phenomenon isinteresting in that it suggests that during the 2 years of soil heating,
microorganisms adapted to growth at higher temperatures, yet lost the ability to remain activein colder
sails. In order to determine whether the microbial population could adapt to cold temperatures given time,
afinal in situ respiration test was conducted in January 1995. Significant microbial activity was
measured, comparable to the control test plot, indicating either readaptation or recolonization by the
microbial population.

The surface warming test plot has shown promise as a form of soil warming. Soil temperatures
and respiration rates were higher than temperatures or rates in either the passive warming or control test
plot and were similar to those measured in the active warming test plot during warm water circulation.
These results indicate that the use of heat tape may prove to be a more efficient means of soil warming
than hot water circulation, because the problem of high soil moisture content is avoided.

An evaluation of cost versus remediation time was conducted to evaluate the feasibility of soil
warming. Costs for the basic bioventing system in Table 4-1 were based on costs calculated by Downey et
a. (1994). Given that average biodegradation rates were higher in the actively warmed plots, overall
remediation time would be more rapid than in the unheated test plots (Table 4-1). Although capital costs
were higher in the active and surface warming test plots, the rapid remediation time results in lower total
costs for power and monitoring. Final costs based on $/yd® bioremediated illustrate that costs are
comparable between the four treatment cells. These results indicate that implementation of a soil warming
technology over basic bioventing is not necessarily based on cost, but on desired remediation time and
funds available for operation and maintenance relative to capital costs.

Final soil sampling at this site was conducted in August 1994. Results of initial and final BTEX
and TPH samples are shown in Figure 4-11 and 4-12, respectively. A dramatic reduction in BTEX was
observed at all sample locations, while TPH on average was reduced by approximately 60%.

Spatial variability in contaminant distribution and biodegradation rates makes quantitative
comparison between the test plots difficult; however, the results from the active, surface, and passive
warning test plots clearly demonstrate that these forms of soil warming have increased biological activity
in these areas. In the active and surface warming test plot, despite problems due to high soil moisture
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Table 4-1. Cost Analysis of Soil Warming Techniques at Site 20, Eielson AFB, Alaska!

Basic
Bioventing Active Passive Surface
Task (no warming) Warming Warming Warming
Site Visit/Planning 5,000 5,000 5,000 5,000
Work Plan Preparation 6,000 6,000 6,000 6,000
Pilot Testing 27,000 27,000 27,000 27,000
Regulatory Approval 3,000 6,000 3,000 3,000
Full-Scale Construction
Design 7,500 7,500 7,500 7,500
Drilling/Sampling 15,000 20,0007 15,000 15,000

Installation/Startup

Remediation Time Required®

2.8 years

3.4 years

9,800

Monitoring 30,550 24,150 11,050

Power 13,160 9,800 9,660 17,000

Final Soil Sampling 13,500 13,500 13,500 13,500

Cost per yd? $25.50 $26.12 $24.86 $24.21

1 Costs are estimated based on a 5,000-yd® contaminated area with an initial contamination
level of 4,000 mg/kg.

2 Requires installation and development of one well.

3 Estimated based on average biodegradation rates in each test plot.
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content, biodegradation rates consistently have been higher than those measured in either the passive
warming or the control test plot, even though the contral test plot appears to be more heavily
contaminated than the active warming test plot. These results have demonstrated the feasibility of
bioventing in a subarctic climate and the potential advantages of soil warming to accelerate remediation.

Further details of the Site 20, Eielson AFB study may be found in Leeson et al. (1995) and Sayles
et a. (1994a).

4.5 Fire Training Area, Battle Creek ANGB, Michigan

TheFire Training Area, Battle Creek ANGB, was included as part of the Bioventing Initiative. It
was estimated that approximately 54,000 to 74,000 gallons of mixed waste fuels, oils, and solvents were
burned at this site during fire training exercises. Soils at the site consist of fineto coarse silty sand
interbedded with gravel and cobbles (Figure 4-13). Groundwater is at a depth of approximatey 30 ft.

As dictated by the Bioventing Initiative protocol, one vent well and three monitoring points were
installed at this site. The vent well was installed to a depth of 30 ft with 20 ft of 0.04-inch slotted screen.

The monitoring points were three-level, with screens located at depths of 8, 17, and 27 ft and were |ocated
at distances of 15, 30, and 50 ft away from the vent well.

Initial treatability tests—an in situ respiration test and a soil gas permeability test—were
conducted to determine the feasibility of bioventing. Oxygen utilization rates ranged from 2.9 to 22
%l/day (2.0 to 15 mg/kg-day), with higher rates associated with more contaminated locations. Soil gas
permeability testing demonstrated an average permeability of approximately 230 darcys and a radius of
influence of greater than 50 ft. These results indicated that both the microbial activity and the
permeability were conducive to an effective bioventing operation.

Initial soil and soil gas samples were collected and a 1-hp regenerative blower was installed at the
site for continuous air injection in September 1992. The blower was operated for 1 year and in October
1993, final soil and soil gas samplegere collected. Although the number of soil and soil gas samples
collected was not sufficient to allow for statistically significant comparison of the data,

! Blower operation was discontinued for 1 month prior to collecting soil gas samples to allow
time for soil gas equilibration.
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certain trends were observed'. Final BTEX and TPH soil gas concentrations were significantly lower than
the concentrations measured initially (Figure 4-14). Soil BTEX concentrations were significantly lower
after 1 year of bioventing, whereas soil TPH concentrations changed little, as expected (Figure 4-15). In
addition, in situ respiration rates declined from rates in the initial treatability test, which is an indication
of decreased contaminant levels”. These results illustrate the effectiveness of bioventing at this site.
Because Michigan uses a risk-based standard for site closure, the Battle Creek siteislikely to be closed
based on these results.

Further details of the Fire Training Area, Battle Creek ANGB study may befoundin
Engineering-Science (1992).

! Threeinitial soil samples were collected, but 29 final soil samples were collected as part of anintrinsic
remediation study.

2 Refer to Section 4.0, Volume |1 for a detailed discussion of in situ respiration rates and site closure.
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5.0 ANALYSESOF BIOVENTING INITIATIVE RESULTS

In May 1992, the U.S. Air Force began the Bioventing Initiative to examine bioventing at 55
contaminated sites throughout the country. In December 1992, the program was increased to more than
130 sites due to increased demand by Air Force managers. To date, data have been collected from 125
contaminated sites at atotal of 50 Air Force bases, one Army base, one Naval installation, and one
Department of Transportation installation. Sites are located in 35 states and in all 10 U.S. EPA regions.
Figure 2-2 illustrates the locations of Bioventing Initiative sites to date. The selected sites represent a
wide range of contaminant types and concentrations, soil types, contaminant depths, climatic conditions,
and regulatory frameworks. Sites were selected based on contamination level (preferably > 1,000 mg/kg
TPH). The sdlections were not biased with regard to factors such as soil type or climatic conditions, in
order to properly evaluate bioventing potential under both favorable and unfavorable conditions.

A Bioventing Test Protocol was developed which provided strict guidelines for treatability testing
and bioventing system design. The Bioventing Test Protocol was peer reviewed and was reviewed by
U.S. EPA Headquarters and the U.S. EPA National Risk Management Research Laboratory. Using the
Bioventing Test Protocol, initial testing was conducted at each site to determine whether bioventing was
feasible. Based on theinitial testing, a decision was made whether to install a bioventing system for 1
year of operation. At the majority of sites (95%), a bioventing system was installed for the 1-year
operational period. At the end of this time period, each Air Force base could either elect to keep the
bioventing system in operation or removeit if the site were deemed to have been remediated sufficiently.

At each site in which a bioventing system was installed, a series of data was collected as
described in Section 2.3: initial site characterization data consisting of soil and soil gas sampling, in situ
respiration rate testing results, and soil gas permeability testing results; 6 month in situ respiration testing
results; and 1-year soil and soil gas sampling and in situ respiration testing results. Data from the initial
testing are summarized in Appendix B and have been used in the statistical analyses as described in
Section 5.2. A summary of the results to date with potential implications is presented in the following
sections.
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5.1 Estimate of Contaminant Removal at Bioventing I nitiative Sites

At all Bioventing Initiative sites in which a blower was installed and operated for 1 year, initial
and final soil and soil gas BTEX and TPH concentrations were measured. The approach was to compile a
limited number of samples from each site and statistically analyze for trends to avoid known spatial
variability. Distributions of soil and soil gas BTEX and TPH concentrations from the initial and |-year
sampling events are shown in Figures 5-1 through 54, respectively. The average soil and soil gas BTEX
and TPH concentrations across all sites are shown in Figure 5-5. In general, the most dramatic reductions
were observed in BTEX removal in both soil and soil gas samples. As an example, soil results from Site 3
at Battle Creek ANGB are shown in Figure 5-6. After 1-year of bioventing operation the BTEX
concentrations are very low and are no longer a source of groundwater contamination; therefore, site
closureis now aviable option for this site.

The objective of the 1-year sampling event was not to collect the large number of samples
required for statistical significancefor asingle site. Rather, the objective was to give a qualitative
indication of changes in contaminant mass. Soil gas samples are somewhat similar to composite samples
in that they are collected over awide area. Thus, they provide an indication of changesin soil gas profiles
(Downey and Hall, 1994). Blower operation was discontinued 30 days prior to sample collection to allow
for soil gas equilibration. In contrast, soil samples are discrete point samples subject to large variabilities
over small distances/soil types. Given this variability, coupled with known sampling and anal ytical
variabilities, alarge number of samples at a single site would have to be collected to conclusively
determinereal changes in soil contamination. Due to the limited number of samples, these results should
not be viewed as conclusive indicators of bioventing progress or evidence of the success or failure of this
technol ogy.

If arisk-based approach to remediation is used which focuses on removing the soluble, mobile,
and more toxic BTEX component of the fuel, remediation times can be significantly reduced. As
discussed in the Tyndall AFB case history®, the BTEX fraction was removed preferentially over TPH.
The potential for bioventing to preferentially remove BTEX makes this technology suitable for risk-based
remediations. In addition, the low levels of BTEX that have been encountered at the majority of the

! Refer to Section 4.2 for a presentation of this case history.
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Figure 5-6. Initial and Final Soil Sampling Results at Site 3, Battle Creek ANGB, Michigan
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Bioventing Initiative sites further support an emphasis on risk-based remediation (Figure 5-7). Over 85%
of theinitial soil samples contained less than 1 mg/kg of benzene.

5.2 Statistical Analysis of Bioventing Initiative Data

One of the primary objectives of the Bioventing Initiative was to devel op a large database of
bioventing systems from which it could be determined which parameters are most important in evaluating
whether to implement bioventing. This effort is the largest field effort to date where data have been
collected in a consistent manner to allow for direct comparison of results across sites. Results of the
statistical analyses can be used to evaluate which soil measurements should be taken and, if bioventing
performance is poor, which parameters may be adjusted to improve performance.

Data generated from the Bioventing I nitiative were subjected to thorough statistical analyses to
determine which parameters most influenced observed oxygen utilization rates. Procedures used for
conducting the statistical analyses and the results of these analyses are presented in the following sections.

5.2.1 Proceduresfor Statistical Analysis

Data collected from 125 Bioventing Initiative sites have been analyzed for this study. The study
involved in situ respiration test data, soil gas permeability test data, and soil chemistry and nutrient data
from each site. Several parameters were measured in the soil samples. The statistical analyses had five
specific objectives:

* Todevelop aconsistent statistical approach for calculating the oxygen utilization and carbon
dioxide production rates from the in situ respiration data.

* To characterize the oxygen utilization rate as a function of parameters measured during initial
testing.

* Todeterminethe relationship between carbon dioxide production rate and pH or alkalinity by
characterizing the ratio of oxygen utilization rate to carbon dioxide production rate asa
function primarily of pH and alkalinity.
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Figure 5-7. Average BTEX Concentrations at Bioventing Initiative Sites
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* Tocharacterize soil gas permeability as afunction of particle size and moisture content.

®* Tocompare TKN concentrations at contaminated sites with those at uncontaminated

background aress.

Averages for oxygen utilization and carbon dioxide production rates and soil parameters were
computed for each site. All subsequent analyses were performed on the site averages. Table 5-1 displays
the parameters included in the statistical analyses, their units, and transformations performed on these
parameters whenever necessary.

Datawere stored in Statistical Analysis System (SAS) databases and all statistical manipulations
and analyses were conducted using the SAS software package. M ethods used for characterizing the data
and thefinal regression model are presented in the following sections for each of the listed objectives.

5.2.2 Calculation of Oxygen Utilization and Carbon Dioxide Production Rates

A statistical analysis was conducted to consistently calculate oxygen utilization and carbon
dioxide production rates. A linear, time-related change in oxygen and carbon dioxide levels that is
characterized by a constant (or zero-order) rateistypical of most of the sites. However, in some sites, a
two-piecewise linear change is observed. An initial rapid rate is observed followed by a leveling off. This
change in rates generally occurs once oxygen becomes limiting, typically below to 10% oxygen.

The two-piecewise regression model, with a slope change at time t,, was fitted to the oxygen (and
carbon dioxide) versus time data obtained at every monitoring point. The piecewise regression model is
presented below:

Ri = a + [Bt; ti<t, (5-1)
R =(@+Bto)+(B+9) (ti-t) >t (5-2)

fori=1,2,.., #of observations at each monitoring point, and where:
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Category Parameter Units Transformation® Acronym®
In Situ Oxygen utilization rate % /hr Log 02
Rcs:ai::tsion Carbon dioxide production rate % /hr None (60 7]
Ratio of the carbon dioxide No units Square root Ratio
production rate to oxygen
utilization rate
Soil Soil gas TPH ppmv Log tphsg
Parameters Soil gas BTEX ppmv Log btexsg
Soil TPH mg/kg Log tphs
Soil BTEX mg/kg Log btexs
pH No units Log PH
Alkalinity mg/kg as CaCO, Log ALK
Iron content mg/kg Log IRN
Nitrogen content mg/kg Log NIT
Phosphorus content mg/kg Log PHO
Moisture content % wt None MOI
Gravel % wt None GRA
Sand % wt None SAN
Silt % wt None SIL
Clay*® % wt None and log CLA
Soil gas permeability Darcy Log PRM
Soil temperature Celsius None TMP
Other Season (time of year) Day None season

a

Transformation was applied to the parameter for purposes of statistical analysis.

Acronym is used for the parameter in this report.

The correlations in Figures 5-9 through 5-14 and Figure 5-17 are based on untransformed clay.
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R = measured i"™ oxygen or carbon dioxide level at timet; (%);

a = oxygen or carbon dioxide level at initial time (%);

B = rate of change of oxygen or carbon dioxide level with time (%/hr);
0 = increase or decreasein the rate of change at timet, (%/hr);

to time at which the slope change occurs (hr).

The piecewise regression model was implemented using the NLIN procedure (nonlinear
regression procedure) in the SAS software package.

The parameter & in the above model measures the increase or decrease in the slope at time to.
Therefore, the statistical significance of d confirmed the suitability of a two-piecewise mode fitted to the
data. The rate of oxygen utilization (or carbon dioxide production) was estimated from the slope of the
first linear piece, 3, whenever & was dtatistically significant at the 0.05 significance level. For example,
Figure 5-8 presents the piecewise linear model fitted to oxygen data at a monitoring point at Site FSA-1,
Air Force Plant (AFP) 4, Texas, where ,3 was estimated to be — 1.1 %/hr.

In cases wherd was not significant at the 0.05 level, a linear regression model of the following

form was fitted to the data:

Ri = a +[3t; for all (5-3)

where: the rate of oxygen utilization (or carbon dioxide production) was determined from the slope of the
straight line 3.

For cases in which six or fewer observations were available at a monitoring point, or when the
oxygen levels exhibited virtually no change over a short initial time period followed by a linear change,
the piecewise analysis was not attempted. In such cases, a linear regression model, as described above,
was fitted. In these cases, the suitability of the linear model was confirmed by inspection of the model-fit
to observed data.
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Figure 5-8.  Use of Piecewise Analysis of Oxygen Utilization Data from Site FSA-1, AFP 4,
Texas
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5.2.3 Correlation of Oxygen Utilization Rates and Environmental Parameters

A preliminary analysis of the untransformed data was performed in which a regression model was
fitted to the oxygen utilization rate using forward stepwise regression. This model accounted for the
effects of the soil parameters and their interactions. In order to reduce the effect of multicollinearity
among the parameters on the fitted model, soil gas BTEX levels and gravel were excluded from the
modeling. In other words, soil gas BTEX was highly correlated with soil gas TPH, and thereforeit was
concluded that the effect of soil gas BTEX levels on the oxygen utilization rate can almost completely be
explained by soil gas TPH concentrations. Also, since the particle size levels added up to a constant value
(100%), the effect of gravel was assumed to be redundant in the modeling.

As aresult of fitting the regression model to the oxygen utilization rate it was found that soil
particle sizes and permeability had a dominating influence on the oxygen utilization rate; that is, low
levels of permeability and sand, and high levels of silt and clay appeared to correlate strongly with high
oxygen utilization rates.

In order to determine whether a handful of sites were unduly influencing the statistical modeling,
sites with high oxygen utilization rates were examined in detail. Seven sites in the analyses had extremely
high oxygen utilization rates, well above average rates from other sites. A two-sample  t-test was
performed on each parameter (e.g. sand, nitrogen, etc.) to determine whether the average value of the
parameter over the seven sites was different from the corresponding average for the remaining sites. This
analysis revealed statistically significant differences in particle size, soil gas permeability, and soil TPH
concentrations between the two groups of sites (Table 5-2). As aresult of this analysis, it was determined
that the seven sites with extremely high oxygen utilization rates were atypical with respect to their levels
of particle size, soil gas permeability, and soil TPH concentrations.

In order to reduce the influence on the model for the oxygen utilization rate caused by these seven
sites, the log transformation of the oxygen utilization rate was taken. Additionally, the log transform
resulted in more normally distributed data for the oxygen utilization rate. However, sites with oxygen
utilization rates near zero receive artificial importance as aresult of the transformation. To eiminate this
artificial effect caused by the log-transformation, all the log-transformed values of
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Table5-2. Par ameters That Distinguish the Seven Sites with High Oxygen Utilization Rates
From the Remaining Sites

Par ameter Level of Parameter in Seven SitesRelativeto Other Sites
Sand Lower
Silt Higher
Clay Higher
Soil Gas Permesability Lower
Soil TPH Lower

the oxygen utilization rate below -2.5 were censored, that is, set to a constant value of -2.5. Censoring
was based on visual inspection of the log-transformed data.

Subseguently, the log transform of some of the soil parameters was taken if the data for the
parameter were not well represented by a normal distribution. Normality in the data was checked using
the Shapiro-Wilk test for normality and by observing histograms and normal probability plots.

Asaprdiminary step to determine the influence of the soil parameters on the oxygen utilization
rate, correlations between the rate and each of the soil parameters were examined. This step was
conducted to examine strong relationships between oxygen utilization rates and measured environmental
parameters to assist in developing a statistical model describing performance at the Bioventing Initiative
sites. Firg, the log transformation of the oxygen utilization rate and some of the soil parameters was
taken to obtain more normally distributed data on each parameter (Table 5-1). After these
transformations, the data for each parameter were plotted against the corresponding data
for each of the other parameters.

Figures 5-9 through 5-14 display the magnitude of the correlations among the data parameters.
Specifically, Figures 5-9 through 5-11, display the correlations between the oxygen utilization rate and
the soil parameters and Figures 5-12 through 5-14 present the correlations between the soil parameters.
In each of these figures, ellipses are drawn on each plot containing 95 % of the estimated bivariate
distribution. The plots for which the ellipses are narrow represent pairs of e ements that have a strong
observed correlation. Pairs of elements that are positively correlated have the ellipse with the major axis
running from the lower |eft to the upper right, whereas negative correlations are indicated by the major
axis running from the lower right to the upper left. The magnitude of the correlation can beinferred
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Figure 5-9.  Oxygen Utilization Rates, Oxygen:Carbon Dioxide Rate Ratios, Element
Concentrations, Moisture Content, pH, and Alkalinity Site Average Correlation

Scatterplot
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Figure 5-10. Oxygen Utilization Rates, Oxygen:Carbon Dioxide Rate Ratios, Contaminant
" Concentrations, Temperature, and Moisture Content Site Average Correlation
Scatterplot
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Figure 5-11. Oxygen Utilization Rates, Oxygen:Carbon Dioxide Rate Ratios, Particle Size,
Moisture Content, and Soil Gas Permeability Site Average Correlation Scatterplot
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Figure 5-13. Contaminant Concentrations and Particle Size Site Average Correlation Scatterplot
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Figure 5-14. pH, Alkalinity, and Particle Size Site Average Correlation Scatterplot
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from the shape of the ellipse by comparing it to the key figure. In the key figure, comparable dlipses are
displayed for distributions with known correlations of 90%, 60%, 30%, and 0%.

For example, in Figures 5-9 through 5-11, it can be seen that the oxygen utilization rate is most
positively correlated with nitrogen (Figure 5-9, correlation coefficient r = 0.40), moisture (Figure5-9, r =
0.30), and soil gas TPH concentrations (Figure 5-10, 0.20), and negatively correlated with sand (Figure
5-11, r = 0.25) and temperature (Figure 5-10, r = 0.25). These values indicate that high, levels of nitrogen,
moisture, and soil gas TPH concentrations and low levels of sand and temperature appear to correlate
with high oxygen utilization rates.

It should be noted that the correlation between soil temperature and oxygen utilization rate is of
little practical significancein this analysis. At a given site, temperature has been shown to correlate well
with microbial activity, which displays peak activity in summer months and low activity in winter
months. However, it has been noted that the temperature/microbial activity relationship is very site
specific. In other words, microorganisms in Alaska will show peak activity in summer months with
comparable oxygen utilization rates to organisms from more temperate climates; however, soil
temperatures will be significantly different. Therefore, it is not possible to correlate rates with temperature
under such different climatic conditions as were seen at Bioventing I nitiative sites.

Among the soil parameters, the correlation coefficient between soil gas BTEX and TPH
concentrations is 0.92 (Figure 5-9) and that between pH and alkalinity is 0.75 (Figure 5-9). The
correlations between the particle sizes (sand, silt, and clay), moisture, and soil gas permeability are also
pronounced.

After taking the log transformation, a second regression model was fitted to the oxygen utilization
rate using stepwise regression. Finally, the effect of a cyclic seasonal component on the residuals obtained
from the fitted regression model was investigated by including the date that theinitial in situ respiration
test was conducted.

Thefinal regression model for the oxygen utilization rateis:
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log(O,) = -2.7 + 0.39 log (NIT) - 0.108 (MOI) +

0.017 log (TPHsg) « MOI - 0.004 log (TPHsg) * TMP (54

Each of the effects in the above model is statistically significant at the 0.05 significance level.
Note that the effects appearing in the model are consistent with the relationships observed in the bivariate
setting. The model explains 41% of the variability in the log-transformed oxygen utilization rate; that is, a
64% correlation between the observed and model-predicted |og-transformed oxygen utilization rates.
Figure 5-15 illustrates actual versus predicted oxygen utilization rates based on model predictions. As
shown, the model appears to explain mid-range oxygen utilization rates fairly well, but low oxygen
utilization rates are not predicted as accurately. This may be dueto an effect on microbial activity not
measured during the Bioventing Initiative, and therefore, unexplained in the model.

5.2.4 Correlation of Oxygen Utilization and Carbon Dioxide Production Rate Ratios With
Environmental Parameters

Because in situ biodegradation rates are measured indirectly through measurements of soil gas
oxygen and carbon dioxide concentrations, abiotic processes that affect oxygen and carbon dioxide
concentration will affect measured biodegradation rates. The factors that may most influence soil gas
oxygen and carbon dioxide concentrations are soil pH, soil alkalinity, and iron content.

At nearly al sitesincluded in the Bioventing Initiative, oxygen utilization has proven to be a
more useful measure of biodegradation rates than carbon dioxide production. The biodegradation ratein
mg of hexane-equivalent/kg of soil per day based on carbon dioxide production usually is less than can be
accounted for by the oxygen disappearance. A study conducted at the Tyndall AFB site was an exception.
That site had low-alkalinity soils and low-pH quartz sands, and carbon dioxide production actually
resulted in a slightly higher estimate of biodegradation (Miller, 1990).

In the case of the higher pH and higher alkalinity soils at sites such as at Fallon NAS and Eielson
AFB, little or no gaseous carbon dioxide production was measured (Hinchee et al., 1989; Leeson et al.,
1995). Thisis possibly due to the formation of carbonates from the gaseous evolution of carbon dioxide
produced by biodegradation at these sites. A similar phenomenon was encountered
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by van Eyk and Vreeken (1988) in their attempt to use carbon dioxide evolution to quantify
bi odegradation associated with soil venting.

In order to determine whether pH and alkalinity influenced carbon dioxide production rates at
Bioventing Initiative sites, an analysis of theratio of oxygen utilization to carbon dioxide production
versus soil parameters was performed. Due to stoichiometry?, the ratio of the oxygen utilization to carbon
dioxide production rate will not be 1, because for every 9.5 moles of oxygen consumed, 6 moles of
carbon dioxide are produced. A sguare root transformation of the oxygen utilization and carbon dioxide
production rate ratio and log transformations of some of the soil parameters were taken whenever the data
were not well represented by the normal distribution. Figures 5-9 through 5-11 display the bivariate
relationships between the ratio and the soil parameters after the transformation. In these figures, as
expected, there is a negative correlation between the ratio and the oxygen utilization rate (Figure 5-9,
r=-0.45). The correlation of theratio with clay is the most pronounced (Figure 5-11, r=-0.40). Theratiois
also negatively corrdated with pH (Figure 5-9, r=-0.25) and alkalinity (Figure 5-9, r=-0.30). As noted
previously, pH and alkalinity are strongly positively related (Figure 5-9, r=0.75). The correlations of the
ratio with iron, moisture, permeability, and particle sizes are between 0.20 and 0.30 (Figures 5-9 and
5-11).

The statistical methods used to model the ratio of the oxygen utilization rate to carbon dioxide
production rate as a function of the soil parameters are similar to those used for the oxygen utilization rate
analyses. As a prdiminary step, a square root transformation of the ratio and log transformation of some
of the soil parameters were taken to obtain more normally distributed data. All the transformations for the
soil parameters except clay were consistent with those taken previously to model the oxygen utilization
rate. A log transformation of clay was considered as it was more correlated with the ratio.

After applying the transformation, aregression model was fitted to the ratio using forward
stepwise regression. The model accounted for the effects of each of the soil parameters (except season)
and their interactions. Finally, the effect of a cyclic seasonal component on the residuals obtained from
the fitted model was determined by incorporating the date the initial in Situ respiration test was conducted.

! Refer to Section 3.2.1 for the stoichiometry of hydrocarbon degradation.
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Thefinal moddl for theratio of the carbon dioxide production rate to the oxygen utilization rate is
asfollows:

((z;:f:)% = 1.28 - 0.38log(pH) - 0.095log(clay) + 0.0007log(tphs)  TMP (-5

Each of the effects in the above model is statistically significant at the 0.05 significance level.
The model explains 40% of the variability in the transformed ratio. This amounts to 63 % correlation
between the observed and model-predicted transformed ratios. The effects of pH on theratio as predicted
by the model are presented in Figure 5-16. The complicated nature of the fitted regression model for the
ratio makes the quantification of the effects in the model difficult. However, based on inspection of
Figure 5-16, it can be seen that as pH increases, theratio of the carbon dioxide production rate to the
oxygen utilization rate decreases, as would be expected given the formation of carbonates.

5.2.5 Corrélation of Soil Gas Per meability With Environmental Parameters

The bivariate relationships between log-transformed soil gas permeability and each of the
independent variables of interest are shown in Figure 5-17. In this figure, permeability is most strongly
correlated with clay (r=-0.50). The magnitudes of the correlations with both moisture and sand are less
pronounced and similar.

The statistical methods used here are similar to those described previously for the oxygen
utilization rate and the ratio. Forward stepwise regression was used to determine a regression model for
the log-transformed soil gas permeability. The independent variables of interest in the modeling were
moisture content and the particle sizes (sand, silt, and clay).

Thefinal model describing soil gas permeability is given below:

log(PRM) = 3.2 - 0.064 clay (5-6)

Based on this model, clay alone explains 21% of the variability in the log-transformed soil gas
permeability. The effect of clay on soil gas permeability as predicted by the model is presented in Figure
5-18. In thisfigure, the soil gas permeability levels greater than 100 have been censored; that
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PRM = log Soil Gas Permeability GRA = Gravel SAN = Sand SIL = Siit CLA = Clay MO! = Moisture
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Figure 5-17. Soil Gas Permeability, Moisture Content, and Particle Size Site Average
Correlation Scatterplot
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is, they were set to a constant value of 100. Based on the regression model it is determined that an
increasein clay by 5 units decreases soil gas permeability by 25 % on average.

5.2.6 Analyses of Data From Contaminated and Background Areas

Asthe preliminary step to comparing the data at background and contaminated sites,
transformations of the data parameters were considered. These transformations were consistent with those
taken previously to address the other objectives of the statistical analysis. After taking the transformation,
statistical analyses were performed separately on each parameter (nitrogen, oxygen utilization rate, etc.).
The goal of this analysis was to determine significant differences in the levels of each parameter at
background and contaminated sites, with particular interest in TKN concentrations. Measurement of TKN
accounts for nitrogen sources within cellular material; therefore, it is possible that TKN concentrations
may be higher in contaminated areas, where microbial populations may be higher, than in uncontaminated
aress. To date, thereis no significant difference between TKN concentrations at contaminated sites
(average of 232 mg/kg) and those at background areas (average of 226 mg/kg).

5.2.7 Summary

Based on the statistical analyses presented in the previous sections, the following overall
conclusions are drawn:

* Therelationships between the biodegradation rates and the soil parameters are not very
strong. However, some significant relative effects of the soil parameters stand out from
the statistical evaluation conducted in the study. Namely, nitrogen, moisture, and soil gas
TPH concentrations appear to be the most important characteristics influencing observed
field oxygen utilization rates.

* Theratio of the carbon dioxide production rate to the oxygen utilization rate correlates
strongly with pH and clay levels in the soil.

* Soil gas permeability correlates with each of the particle sizes (sand, silt, and clay) and
moisture content; however, the relative effect of clay on permeability is most important.
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The Bioventing Initiative has provided a large database of information useful in the design and
implementation of bioventing systems. The statistical analyses provide guidelines for determining which
parameters are most important to bioventing technology. However, these data must be balanced by
experience and site-specific data. For example, sites with relatively low soil nitrogen concentrations
should not be discarded as bioventing sites for this reason alone, nor should it be assumed that nitrogen
addition at such sites will increase oxygen utilization rates. Data collected from the U.S. Air Force
Bioventing Initiative have shown that even sites with low soil nutrient concentrations can exhibit

significant microbial activity and would therefore respond well to bioventing.
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GLOSSARY

abiotic - not relating to living things, not alive
acidity - measure of the hydrogen ion concentration of a solution

adsorption - the process by which molecules collect on and adhere to the surface of an adsorbent solid due
to chemical and/or physical forces

aeration - process of supplying or introducing air into a medium such as soil or water

aerobic - living, active, or occurring only in the presence of oxygen

air sparging - general term for the technology of introducing gases, usually air, beneath the water tableto
promote site

remediation. Air sparging can be divided into two distinct processes: in well aeration and air injection

alkalinity - measure of the hydroxide ion concentration of a solution

alluvia - relating to flowing water asin a stream or river

anaerobic - living, active, or occurring only in the absence of oxygen

aquifer - awater-bearing layer of permeablerock, sand, or gravel

bentonite - clay composed of volcanic ash decomposition which is used to seal wells (hole plug)

bioavailability - ageneral term to describe the accessibility of contaminants to the degrading populations.
Bioavailability consists of: (1) a physical aspect related to phase distribution and mass transfer, and
(2) aphysiological aspect related to the suitability of the contaminant as a substrate

biodegradable - a material or compound which is able to be broken down by natural processes of living
things such as metabolization by microorganisms

biodegradation - the act of breaking down material (usually into more innocuous forms) by natural
processes of living things such as metabolization by microorganisms

biodegradation rate - the mass of contaminant metabolized by microorganisms per unit time. In soil
contamination this is normalized to the mass of soil and is usually expressed as mg contaminant

degraded/kg soil day (mg/kg-day).

biofilm - a structure in which bacteria fixed to a surface produce a protective extracellular polysaccharide
layer

biofiltration- process using microorganisms immobilized as a biofilm on a porous filter substrate such as
peat or compost to separate contaminants. As the air and vapor contaminants pass through the filter,
contaminants transfer from the gas phase to the biolayer where they are metabolized
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biomass - the amount of living matter (in a specified area)
bioreactor - a container or areain which a biological reaction or biological activity takes place
bioreclamation - the process of making a contaminated site usable again through biological processes

bioremediation - general term for the technology of using biological processes such as microbial
metabolism to degrade soil and water contaminants and decontaminate sites

bioslurping - atechnology application that teams vacuum-assisted free-product recovery with bioventing
to simultaneously recover free product and remediate the vadose zone

bioventing - the process of aerating subsurface soils by means of installed vents to stimulate in situ
biological activity and optimize bioremediation with some volatilization occurring

blower - equipment which produces a constant stream of forced air. Blowers are sized in terms of
horsepower

capillarity - the action by which aliquid is held to a solid by surface tension

capillary fringe - thefirst layer of rock above a layer in which water is held by capillarity

catalyst - a substance which initiates a chemical reaction allows a reaction to proceed under different
conditions than otherwise possible, or accelerates a chemical reaction; catalysts are not consumed
in the reaction; enzymes are catalysts.

catalytic oxidation - an incineration process which uses catalysts to increase the oxidation rate of organic
contaminants allowing equivalent destruction efficiency at alower temperature than flame

incineration

clay - fine-grained soil that can exhibit putty-like properties within a range of water content and is very
strong when air-dry

co-metabolic process - metabolism of a less favored substrate occurring during the metabolism of the
primary substrate

cone of depression - area of lowered water table around awell site due to active pumping
contaminant - something that makes material in contact with it impure, unfit, or unsafe; a pollutant
diffusion - process of passive transport through a medium motivated by a concentration gradient
diffusivity - diffusion coefficient; the amount of material, in grams, which diffuses across an area of 1

square centimeter in 1 second due to a unit concentration gradient, (particular to compound and
medium pair)



Volume I: Bioventing Principles A-3 September 29, 1995
electron acceptor - relatively oxidized compounds which take el ectrons from electron donors during
cdlular respiration resulting in the release of energy to the cell

electron donor - organic carbon, or reduced inorganic compounds, which give e ectrons to electron
acceptors during cellular respiration resulting in the release of energy to the cell

enzyme - biologically produced, protein-based catalyst

ex Situ - refersto atechnology or process for which contaminated material must be removed from the site
of contamination for treatment

facultative - amicrobial trait enabling aerobic or anaerobic respiration, depending on environment

first order reaction - a chemical reaction in which an increase (or decrease) in reactant concentration
resultsin a proportional increase (or decrease) in the rate of the reaction

head - the pressure difference between two places, an energy term expressed in length units
immiscible - refersto liquids which do not form a single phase when mixed; e.g. oil and water

insitu - refers to a technology or treatment process which can be carried out within the site of
contamination

in situ respiration test - test used to provide rapid field measurement of in situ biodegradation rates to
determine the potential applicability of bioventing at a contaminated site and to provide information
for afull-scale bioventing system design in-well aeration - the process of injecting gas into awell to
produce an in-well airlift pump effect

mineralization - the complete conversion of an organic compound to inorganic products (principally water
and carbon dioxide)

miscible - refers to liquids which form a single phase when mixed; e.g. ethanol and water

nitrogen fixation - the metabolic assimilation of atmospheric nitrogen by soil microorganisms and its
release for plant use upon the death of the microorganisms

nutrients - constituents required to support life and growth
off-gas - gas which leaves a site, typically from a point source during extraction operations
oxidation- chemical process which resultsin a net loss of electrons in an e ement or compound

oxygen utilization rate - rate of reduction of thein situ oxygen content of soil gas due to biological and
chemical action

ozonation - the injection of ozone into a contaminated site
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packed bed thermal treatment - process which oxidizes organic contaminants by passing the off-gas
stream through a heated bed of ceramic beads resulting in the destruction of the organic compounds

perched aquifer - unconfined groundwater separated from an underlying main body of groundwater by a
low-permeability rock layer which blocks the vertical movement of water

permeability - measure of the ability of liquid or gas to move through pores and openings in a material
pH - measure of the alkalinity or acidity of a solution, the negative log of the hydrogen ion concentration

photocatalytic oxidation - process by which volatile organic compounds are converted to carbon dioxide
and water by exposure to ultraviolet (W) light

pore space - the open spacein amaterial through which liquid and gas can move
porosity - measure of the amount of available space in a material through which liquid and gas can move
primary substrate - substrate which provides the majority of the growth and energy requirements for cells

pump and treat technology - treatment method in which the contaminated water is pumped out of the
contaminated site and then treated off site before being returned

radius of influence - the maximum distance from the air extraction or injection well where vacuum or
pressure (soil gas movement) occurs

radius of oxygen influence - the radius to which oxygen has to be supplied to sustain maximal
biodegradation; a function of both air flowrates and oxygen utilization rates, and therefore depends
on site geology, well design, and microbial activity

Raoult’s law - physical chemical law which states that the vapor pressure of a solution is equal to the mole
fraction of the solvent multiplied by the vapor pressure of the pure solvent

reduction - chemical process which resultsin a net gain of electrons to an e ement or compound
remediation - activity involved with reducing the hazard from a contaminated site

respiration rate - see oxygen utilization rate

sand - unconsolidated rock and mineral particles with diameters ranging from 1/16- to 2 mm

saturated zone - the layers of soil which lie below the groundwater table



Volume I: Bioventing Principles A-5 September 29, 1995

silt - unconsolidated rock and mineral particles with diameters ranging from 0.0002-0.05 mm

soil vacuum extraction (SVE) - a process designed and operated to maximize the volatilization of low
molecular-weight compounds, with some biodegradation occurring soil gas permeability — a soil's
capacity for fluid flow, varies according to grain size, soil uniformity, porosity, and moisture
content

sorb - to take up or hold by means of adsorption or absorption

substrate - the base on which an organism lives; reactant in microbial respiration reaction (electron donor,
nutrient)

surfactant - substance which lowers the surface tension of a liquid

treatability - ability of a site to be remediated

vacuum-enhanced pumping - use of a vacuum pump to lift groundwater, or other liquids or gases, from a
well while producing a reduced pressure in the well vadose zone - the zone of soil below the
surface and above the permanent water table

valdose zone — the zone of soil below the surface and above the permanent water table

vent well - a well designed to facilitate injection or extraction of air to/from a contaminated soil area
volatile - easily vaporized at relatively low temperatures

volatilization - process of vaporizing a liquid into a gas

zero order reaction - a chemical reaction in which an increase (or decrease) in reactant concentration
results in no change in the rate of reaction (as long as some reactant is present)
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