Residual Checks

@——P at each
bandwidth
Scaled sum of
squared Mallow's CP

residuals; lower
values = better fit

statistic

Correlation of
residuals with
LWQR fits

..............

Test of normality of
residual distribution;

values close to 1 are
best

Compute average of
residuals at same well
but from multiple depths
prior to plotting

Filliben's probability plot
correlation coefficient

test

Average bias of
residuals

Summarize residual
diagnostic checks

, 4

Construct diagnostic
residual map at each
bandwidth
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Is fit worse over
certain ranges of COC
than others? Values
close to 0 are best

Average difference
between known and
estimated uniform
scores; value close
to 0 is best

/" Overlay plot vs.
~ bandwidth of Mallow's
CP, correlation of

residuals, average bias,
and Filliben's statistic //

/ Color-coded ,
planar map of |
uniform score
residuals

Look for obvious
anomalies or areas

with substantial lack
of fit

J



Build Site

—» Maps with

O,

Reference levels should
adequately 'span’
univariate distribution,
especially the upper tail
if highly skewed

e

Concentration value
compared to each reference
level; | = 1 if concentration =

reference level, | = 0 if
concentration > reference
level

At each mesh node, use
spatial bandwidth to find
known sample values
contained within the local
neighborhood around the
mesh node

MILR

Pick 10 reference
concentration levels
from declustered CDF
(i.e., multiple indicator
levels)

Convert each sample
concentration into
vector of 0-1 indicator
values (l)
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Build site map for
each COC and time
slice using Multiple

Indicator Local
Regression

Reference levels can be chosen as
pre-selected percentiles of
declustered CDF; must ensure,
however, that smallest percentiles
are not below lowest ND reporting

&

MILR
Estimates
Part |

Call up set of
estimation mesh
nodes at which map
estimates will be made

Assign initial weights to
samples in local
neighborhood

t

For each reference level,

apply logit transformation

to corresponding indicator
values in local
neighborhood

Use tri-cube weight
function; samples closer

greater weight than
samples farther away

0 mesh node get

Use LWQR to
determine best-fitting

Call up
selected spatial
bandwidth

LWQR = locally-
weighted quadratic

regression

quadratic surface at
mesh node for each
reference level




Each back-transformed
estimate gives probability
of not exceeding
corresponding reference
level

Back-transform LWQR

MILR .
Estimates estimates at each mesh
Part Il node tc_n_convgrl into
probability estimates
CCDF = updated, Vector of probability 'Fill in' CCDF by updating the
conditional cumulative estimates is used as univariate declustered CDF
distribution function ~ f......... #  'skeleton’ or 'backbone' of ————®| using the skeleton vector of
specific to a given mesh CCDF specific to that mesh node-specific probability
node node estimates

Use CCDF to compute
mean, trimmed mean, or
median concentration
estimate at each mesh
node

Create site
concentration
map

Callup GIS
data layer for
site

One site map
constructed for

each COC & each
time slice

Initial site map
using all sample

Call up site
boundaries for
site

data called the
base map

v

" Site map overlaying GIS |
Call up layer, site boundaries, "-H
sampledata f----- > sample data, & mean, S EERREES

trimmed mean, or median
concentration estimates

concentrations




Positive weights associated
with locations more influential
to base map; zero or negative
weights with less influential or

more redundant locations

Each LWQR estimate
is weighted average

of samples in local
neighborhood

Each augmented vector
has one weight per

sample measurement

Each sampling location
then has one local weight
per time slice associated
with a given mesh node

—

One global weight
associated with
each well

e Regression
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Global
‘ ...............
Weights

Global weights
numerically index

relative mapping
contribution of each

sampling location

v

Call up LWQR
estimates at each
mesh node & each

reference level

Augment local weight vector
by assigning 0 weight to all
samples outside local
neighborhood of mesh node

Average local weight
vectors across multiple
sampling events within a

time slice for each

sample location

Sum local weight vectors
across multiple depths
within each sampling
location

Y

Average local weight vectors
across mesh nodes by

sampling location to form

global regression weights

Vector of weights used to
form a specific LWQR
estimate known as local

weight diagram

:

Average local weight
diagrams across
reference levels to form
mesh node-specific local
weight vector

Gives slightly greater weight
(i.e., influence) to wells with

multiple sampling locations;
wells with single well
screens remain unchanged

—

Table of wells &
global regression IJ

weight associated |
with each well /4




BB Iter_an_ve Well <-----
\ Elimination

Determine number of
wells (r) corresponding to
approximately 5% of total
well list

Sort remaining
wells by global
regression weights

Strategy for
identifying potentially
redundant wells for a

given COC & time
slice

Ly

Tentatively eliminate
n = r wells with lowest
global weights

Original well list
exhausted or new
estimates not possible
to compute?

Use same spatial
bandwidth as used
to create base

maps Y

Use MILR to create
new site map based on
reduced set of well

locations

MILR = multiple
indicator local
regression

Y

v

Gauge spatial
redundancy

Compute new vector
of global regression
weights using reduced
well list

Assess relative
accuracy & uncertainty
of reduced-data
estimates compared to
base map

29



Assess Relative

@

Differences computed on
probability scale to allow
consistent scale of
comparison across COCs,
across time slices, or
regardless of a highly
skewed concentration
distribution

\/-

Accuracy Part 1

Results in one

average probability
difference per node

Compute node-by-node
differences between
reduced-data & base map
LWQR probability
estimates

Visual appraisal of
extent of extreme
under- or
overestimation

v

Average vectors of node-
specific probability
differences across

indicator levels

Set of node-specific
probability differences
labeled the local bias
vector

Determine statistical
accuracy of reduced-data
set for a given COC &
time slice when compared
to the corresponding base

map

L

Each mesh node will
have a vector of

- differences, one

element for each
indicator level

e

Visual appraisal of degree
of over- or underestimation
on reduced-data map
compared to the base map

30

_ Plots of extreme low bias &
extreme high bias extents '

'\ vs. cost of reduced-data ,' : \ 4
well network /
A /" Color-contoured

/| Create map of /indicator difference \I

. local bias vector \ map (i.e., map of }f
|
1

local bias values) !

o

Compute areal or
volumetric extent of
extreme local biases

/

Compute lower 10th " Plots of lower 10th &
and upper 90th upper 90th percentiles |

percentiles of local bias ' vs. cost of reduced- .-J
vector data well network

o




Assess Relative

@

Squared differences
allow computation of
quantity akin to mean
squared error

> Uncertainty -

Part 1

\ 4

Compute node-by-node
squared differences
between reduced-data &
base map LWQR
probability estimates

Results in one
average squared

difference per node

Average vectors of node-
specific squared
differences across
indicator levels

Set of node-specific
squared differences
labeled the local
uncertainty vector

Create map of
local uncertainty
vector

Compute upper 90th

percentile of local
uncertainty vector

Determine statistical
uncertainty of reduced-data
set for a given COC & time
slice when compared to the

corresponding base map

R —

Each mesh node will
have a vector of
differences, one
element for each

indicator level

e

Visual appraisal of areas
of greatest uncertainty on
reduced-data map
compared to the base map

> percentile vs. cost of

v

_,.x"CoIor-contoured local
uncertainty map (i.e., |

' map of local |
\uncertainty values) //

/" Plot of upper 90th \

Vduced-data well set f,-"
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Positive global bias
represents overestimation
of the base map; negative

bias corresponds to
overall underestimation of

base map

Assess Relative
Accuracy Part 2

Y

Average local bias
vector to form estimate
of global bias

A4

Track changes in
global bias

Note that global
bias = 0 for base

map by definition

,

/_. Plot of global ~ °
________ -  Dbiasvs. costof '

reduced-data |
well network /

32



Assess Relative
Uncertainty Part 2

*’

v

Average local
uncertainty vector to
form estimate of global
uncertainty

Global uncertainty =
relative mean
squared error

between reduced-
data & base maps

—_—

Note that global
uncertainty = 0 for

base map by
definition

Provides a numerical \ 4
summary of total relative
statistical uncertainty
associated with given well
network configuration

e

/" Plotofglobal
_________ /uncertainty vs. cost '|

of reduced-data ]
well network /

Track changes in
global uncertainty

Global uncertainty
necessarily Y
increases as
reduced-data map
deviates more from
base map

—_—




@

Rates

|

> Misclassification -

Call up COC-

specific MCL or
regulatory limit

Call up base map
concentration
estimates, including
mean, trimmed
mean, & median

Track the fraction of mesh
nodes classified as one
way relative to limit on

base map but the
opposite way on the

reduced-data map

R

l

To guard against highly
skewed univariate
concentration distributions,
compute misclassification
rates for mean, trimmed
mean, & median estimates
separately

Compute fraction of mesh
nodes misclassified as
exceedances relative to base
map classifications

Compute fraction of mesh
nodes misclassified as non-
exceedances relative to base
map classifications

End Assessment of
Spatial Accuracy &
Uncertainty

Call up reduced-data
map concentration
estimates, including
mean, trimmed
mean, & median

./:
/

v

Vi
g

vs. cost of reduced- .|
data well network |

vs. cost of reduced- j
data well network |

Plots of over- '\ﬁ
classification rates |

V,

Plots of under- \
classification rates '
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Assess all lines of
evidence to judge
"""""""""""""""" redundancy for each
COC & time slice

—

Optimal
Sampling
Network Part 1

Examine site maps for B i EabL:
det_enoratlgn in data accuracy trade-off
quality relative to base o
maps P

Assess changes

Assess changes

in global

in global bias
uncertainty (FF)

Compare indicator
difference maps (DD)
across each level of
data removal (CC)

Assess changes in Assess changes in

v 10;? |§cga?t;§§:«iﬁglres 90th percentile of local

Compare local (CC) uncertainty vector (EE)
uncertainty maps

across each level of
data removal (EE)

v

Assess changes in
misclassification —|[€——

T rates (GG)

Must judge
acceptable level of
information loss
relative to cost
gains

Compare maps of
extreme local bias
across each level of
data removal (CC)

Y

Determine level of data
remgval associated with <
optimal cost-accuracy
trade-off
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Optimal
Sampling
Network Part 2

S

Call up optimal
levels of data
removal for each
COC & time slice

v \
/ Tables for each COC& |
time slice of redundant & |

essential wells, ranked/
sorted by final global
regression weights

Determine separate lists of

__________________ wells deemed redundantat | ___ o~

the COC & time slice-specific
levels of optimality

7 N /' Tables for each COC of
/" Plot of well locations, Determine for each COC /" redundant & essential wells, \

/" with separate color- those wells deemed — 4
coding for redundant redundant across all time
& essential wells slices

ranked/sorted by final '
average global regression
weights (averaged across
time slices)

/ “~
/// \
/" Overall tables of commonly '
Determine those wells ,,/' redundant & essential wells,
------------------ deemed redundant across [~ —P ranked/sorted by final average
all COCs global regression weights

(averaged across COCs)

Determine costs

associated with each
possible optimal

sampling network




Additional
Sampling
Locations

Are new sampling locations
needed for a given COC to
better estimate or classify
contaminant plume?

Possible site locations
identified & prioritized by
computing misclassification
probabilities (Type | and II)
relative to a fixed standard
(e.g., MCL or regulatory limit)

Call up COC-

specific MCL

or regulatory
limit

—

CCDF refers to
updated, conditional
cumulative
distribution function

Type |l misclassification
error = probability of not

exceeding standard
according to CCDF

Y

Compute Type Il
classification errors for

Call up mesh node-

specific CCDF
estimates from

spatial regression of
baseline site map
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Type | misclassification
error = probability of
exceeding standard

according to CCDF

Compute Type |
classification errors for

mesh nodes estimated
to exceed the fixed
standard

|
I
I
I
/ Color contour :

Y

mesh nodes estimated to
be below the fixed
standard

/' Color contour |

map of Type Il } <

. misclassification
errors /

Numerically compute
coordinates of locations
with highest

misclassification

_ map of Type | i

I
]
probabilities of each type 1
]
}

End Spatial

Optimization

misclassification |
\ errors /

',./'/'I'able of locations
where additional '

I: sampling would
help most




